
1/5

June 11, 2013

An introduction to COM connection points
devblogs.microsoft.com/oldnewthing/20130611-00

Raymond Chen

Last time,
we saw how to enumerate all the Internet Explorer and
Explorer Windows and see

what they are viewing.
But that program printed static information.
It didn’t track the

changes to the windows if the user
clicked to another Web page or navigated to a different

folder.

In order to hook that up, we
need to understand the connection point model and the
way

events are expressed in dispatch interfaces.
First, let’s look at the connection point model.

These topics confused me when I first met them
(in part because I didn’t do a good job of

mentally
separating them into two topics and instead treated it
as one big topic),
so I’m going

to spend a few days
trying to explain how it works,
and then later this week, we’ll actually

hook things up.
(And actually hooking it up is a lot easier than explaining it.)

Today, the connection point model.

Suppose you have a widget which can have multiple clients.
The clients can communicate

with the widget by invoking methods
on the widget, like
 IWidget::SetColor .
but how does

the widget communicate with its clients?
Well, since this is COM, the first thing you need is

an interface,
say,
 IWidgetClient .
The idea is that each client implements
 IWidget‐

Client ,
and when the widget needs to, say, notify each client that
the color changed,
it can

invoke
 IWidgetClient::OnColorChanged
on each one.
Each client can register with the

widget for notifications.

The COM interface for standardizing the registration mechanism
is IConnectionPoint .
A

connection point
acts as a middle-man between
the widget and all its clients:
Whenever the

widget needs to notify all its clients,
it tells the connection point to do it.

Widget Connection

Point

→ Client A

→ → Client B

https://devblogs.microsoft.com/oldnewthing/20130611-00/?p=4113
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/10/10424662.aspx

2/5

→ Client C

A client registers with a connection point by calling
 IConnectionPoint::Advise ,
and it

unregisters by calling
 IConnectionPoint::Unadvise .

Okay, that’s great,
but how do clients find the connection point so they can register with it?

The widget exposes an interface known as
 IConnectionPointContainer
which provides

access to an object’s connection points.
The client can call the
 IConnectionPoint‐

Container::FindConnectionPoint method
to get access to a specific connection point.

Here’s how the pieces fit together:

3/5

// error checking elided for expository purposes

void IUnknown_FindConnectionPoint(IUnknown *punk,

 REFIID riid,

 IConnectionPoint **ppcp)

{

// get the IConnectionPointContainer interface

CComQIPtr<IConnectionPointContainer> spcpc(punk);

// Locate the connection point

spcpc->FindConnectionPoint(riid, ppcp);

}

class CClient : public IWidgetClient

{

…

IWidget *m_pWidget;

DWORD m_dwCookie;

};

CClient::RegisterWidgetClient()

{

// Find the IWidgetClient connection point

CComPtr<IConnectionPoint> spcp;

IUnknown_FindConnectionPoint(m_pWidget,

 IID_IWidgetClient, &spcp);

// register with it

spcp->Advise(this, &m_dwCookie);

}

CClient::UnregisterWidgetClient()

{

// Find the IWidgetClient connection point

CComPtr<IConnectionPoint> spcp;

IUnknown_FindConnectionPoint(m_pWidget,

 IID_IWidgetClient, &spcp);

// unregister from it

spcp->Unadvise(m_dwCookie);

}

After registering as a widget client,
the CClient object will receive
method calls on its

IWidgetClient
until it unregisters.

4/5

Now the widget and clients have two-way communication.
If the clients want to initiate the

communuication,
it can call a method on IWidget .
If the widget wants to initiate the

communication,
it can call a method on IWidgetClient .

Note that we’ve created a giant circular reference.
The widget has a reference to its

connection point
(so it can tell it to fire a notification to all its clients),
and the connection

point has a reference to the widget
client
(so it can forward the notification along),
and the

widget client has a reference to the widget
in its m_pWidget member.
In order to break this

cycle,
you have to remember to explicitly call
 UnregisterWidgetClient
when you are no

longer interested in receiving
widget notifications.

Note that even though the arrows in the diagram above
flow from left to right (from widget to

clients),
that doesn’t mean that the
information flow is strictly left-to-right.
You can pass

information in the other direction
via return values or output parameters.

For example, there might be a method on
the IWidgetClient interface
called GetColor :

interface IWidgetClient : IUnknown

{

…
HRESULT GetColor([out] COLORREF *pclr);

…
};

Since there can be multiple clients, the widget
needs to have some sort of rule for deciding

which
client gets to choose the color.
It might decide to ask each client in turn for a color,

until one of them returns S_OK ,
and that client’s color is used and no further clients
are

notified.

Or maybe there’s a method called
 OnSave :

interface IWidgetClient : IUnknown

{

…
HRESULT OnSave([in] IPropertyStorage *pps);

…
};

The convention here might be that all clients
will be notified of the Save operation and they

can write any additional information to the
 IPropertyStorage while handing
the

notification.

Those are just examples.
Feel free to make up your own.
The point is that just because the

arrows go from the
widget to the clients doesn’t mean that information
can’t flow back the

other way.

5/5

Most of the time, you have the simple case where
a widget will expose a single connection

point.
In that case, the generality of the
 IConnectionPointContainer
may seem

unnecessary.
But it allows you to add new connection points later.
For example, you might

have multiple client interfaces
for different types of clients.
You could have
 IWidgetColor‐

Client
for clients that are interested only in color changes,
and
 IWidgetNetworkClient

for clients that are interested only in monitoring the
widget’s network activity.

Or maybe you didn’t plan on having multiple connection points
originally,
but in the second

version of your product,
you want to add additional methods to
 IWidgetClient ,
so you

need to create
 IWidgetClient2 ,
which means that you also need a new connection point

for it.

Next time, a look at the special case where
the client interface is a dispatch interface.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

