
1/8

June 6, 2013

A pathological program which ignores the keyboard, and
understanding the resulting behavior based on what we
know about the synchronous input

devblogs.microsoft.com/oldnewthing/20130606-00

Raymond Chen

Today, we’ll illustrate the consequences of
the way the window manager synchronizes input

when two or more threads
decide to share an input queue.

Since I need to keep separate state for the two windows,
I’m going to start with the
new

scratch program
and
make the following changes:

https://devblogs.microsoft.com/oldnewthing/20130606-00/?p=4153
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/05/10423678.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/22/410773.aspx

2/8

#include <strsafe.h>

class RootWindow : public Window

{

public:

virtual LPCTSTR ClassName() { return TEXT(“Scratch”); }

static RootWindow *Create();

void AppendText(LPCTSTR psz)

{
 ListBox_SetCurSel(m_hwndChild,

 ListBox_AddString(m_hwndChild, psz));

}

void LogMessage(const MSG *pmsg)

{
 TCHAR szMsg[80];

 StringCchPrintf(szMsg, 80, TEXT(“%d\t%04x\t%p\t%p”),

 pmsg->time,

 pmsg->message,

 pmsg->wParam,

 pmsg->lParam);

 AppendText(szMsg);

}

protected:

LRESULT HandleMessage(UINT uMsg, WPARAM wParam, LPARAM lParam);

LRESULT OnCreate();

private:

HWND m_hwndChild;

};

LRESULT RootWindow::OnCreate()

{

m_hwndChild = CreateWindow(

 TEXT(“listbox”), NULL,

 LBS_HASSTRINGS | LBS_USETABSTOPS |

 WS_CHILD | WS_VISIBLE | WS_TABSTOP | WS_VSCROLL,

 0, 0, 0,0, GetHWND(), (HMENU)1, g_hinst, 0);

return 0;

}

3/8

All we did above was add a list box to the window and provide
public methods
 AppendText

to add a string to the list box
and
 LogMessage that adds a string based on the
contents of a

MSG structure.
We’re going to use this list box to log what the program is doing.

bool ShouldLogMessage(UINT uMsg)

{

if (uMsg >= WM_KEYFIRST && uMsg <= WM_KEYLAST) return true;

if (uMsg >= WM_MOUSEFIRST && uMsg <= WM_MOUSELAST) return true;

return false;

}

This helper function above tells us which messages we want to log.
For now, let’s log

keyboard and mouse messages.

Now, in order to demonstrate input thread attachment,
we need two threads.
Here comes the

second thread:

4/8

DWORD CALLBACK AttachedThreadProc(void *lpParameter)

{

RootWindow *prw = RootWindow::Create();

SetWindowText(prw->GetHWND(), TEXT(“Bad window”));

AttachThreadInput(PtrToInt(lpParameter),

 GetCurrentThreadId(), TRUE);

ShowWindow(prw->GetHWND(), SW_SHOW);

BOOL fIgnoreKeyboard = FALSE;

while (true) {

 MSG msg;

 BOOL fMessage;

 if (fIgnoreKeyboard) {

 fMessage =

 PeekMessage(&msg, NULL, 0, WM_KEYFIRST – 1, PM_REMOVE) ||

 PeekMessage(&msg, NULL, WM_KEYLAST + 1, 0xFFFFFFFF, PM_REMOVE);

 } else {

 fMessage = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);

 }

 if (!fMessage) { WaitMessage(); continue; }

 if (msg.message == WM_QUIT) break;

 if (ShouldLogMessage(msg.message)) {

 prw->LogMessage(&msg);

 }

 if (msg.message == WM_KEYDOWN && msg.wParam == VK_SHIFT) {

 prw->AppendText(TEXT(“Stop processing keyboard messages”));

 fIgnoreKeyboard = TRUE;

 }

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}
AttachThreadInput(PtrToInt(lpParameter),

 GetCurrentThreadId(), FALSE);

return 0;

}

5/8

This second thread is intentionally ill-behaved,
so that we can see what happens when there’s

a bad apple in the barrel.
The thread processes messages normally,
until you hit the shift key.

Once that happens, it goes into another mode where it starts
ignoring the keyboard by

stubbornly refusing to pump any keyboard
messages.

Normally, this sort of recalcitrant behavior would affect only
the thread itself,
but since this

thread is attached to the main thread,
the scope of the damage expands.

int PASCAL

WinMain(HINSTANCE hinst, HINSTANCE, LPSTR, int nShowCmd)

{

g_hinst = hinst;

if (SUCCEEDED(CoInitialize(NULL))) {

 InitCommonControls();

 RootWindow *prw = RootWindow::Create();

 if (prw) {

 ShowWindow(prw->GetHWND(), nShowCmd);

 DWORD dwId;

 CreateThread(0, 0, AttachedThreadProc,

 IntToPtr(GetCurrentThreadId()), 0, &dwId);

 MSG msg;

 while (GetMessage(&msg, NULL, 0, 0)) {

 if (ShouldLogMessage(msg.message)) {

 prw->LogMessage(&msg);

 }

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

 CoUninitialize();

}
return 0;

}

We modify our main program to create the secondary thread
(which attaches itself to the

main thread),
and then to log messages in its message pump.

6/8

Okay, now run this program and use the mouse to resize and
reposition the two windows side

by side with no overlap.
(This will make it easier to observe what’s going on.)
Wave the

mouse over both windows, and click on each of the
windows and do some typing,
but don’t

hit the shift key yet.
So far, everything works as you expect:
Focus switches back and forth,

mouse and keyboard messages are
delivered.

Now put focus on the bad window and tap the shift key.
This puts the bad window into

fIgnoreKeyboard = TRUE mode,
where it stops pumping keyboard messages
(but pumps

everything else).

What we just did is leave the WM_KEYUP message
for the shift key in the input queue,
and

steadfastly refused to process it.
The message just sits there forever.
Let’s see what this does

to the input retrieval algorithm.

Wave the mouse over the bad window.
Notice that mouse events are still delivered to the bad

window.
(Keyboard events are not delivered because the bad thread
is not pumping keyboard

messages.)
This makes sense, because the filtered PeekMessage
for
 WM_KEYLAST + 1

through
 0xFFFFFFFF includes the mouse message range
but excludes the keyboard message

range,
so the loop that looks for a candidate message completely
ignores the stuck keyboard

message.
All it sees are mouse messages,
and they are not stuck.
The code is taking advantage

of the “peek into the future”
feature we mentioned yesterday.

Next thing you notice is that if you wave the mouse over the
main window, it does not receive

mouse input.
That’s because the main window performs an unfiltered peek.
The stuck

keyboard message satisfies the filter,
and since that message belongs to another thread
and is

ahead of all the mouse messages,
the input manager will not return the mouse messages
until

the stuck keyboard message is cleared out.

This also provides an example of the paradox I alluded to yesterday:
The main thread is not

receiving any input because it is performing
an unfiltered message retrieval,
and there is a

stuck keyboard message in the input queue.
On the other hand, if the main thread had

explicitly peeked
only for mouse messages,
then the stuck keyboard message would not have

been taken into
consideration, and it would have gotten the mouse messages.
The paradox is

that under these strange conditions,
a filtered message retrieval actually returns messages

that an unfiltered retrieval would not!

Now here’s another trick:
Click on the main window.
(Yes, it’s not processing mouse input,

but do it anyway.)
Now both windows stop responding to input.
What happened?

Back before you clicked on anything,
the only stuck input message was that keyboard

message.
Sure, there were mouse motions that took place,
but we saw that
WM_MOUSEMOVE

messages are generated on demand
rather than being posted into the queue when the mouse

moves.
Therefore, all that mouse-waving didn’t actually leave a stuck
mouse message in the

http://blogs.msdn.com/b/oldnewthing/archive/2011/12/19/10249000.aspx

7/8

queue.
On the other hand, when you click,
that generates a mouse click event in the queue,

and those are generated when the click happens,
not on demand.
Therefore, when you click

on the main window,
a click event goes into the input queue.

Now think about what’s in the input queue:
There is a stuck keyboard message (for the bad

window,
which is stuck because the bad window refuses to pump keyboard messages),
and

there is a stuck mouse message (for the main window,
which is stuck because the main

window is waiting for the stuck
keyboard message to clear out).
New keyboard input will not

be processed because of the stuck
keyboard message,
and
new mouse input will not be

processed because of the stuck
mouse message.

Result: Nobody gets any input.

Bonus investigation:
While you’re in this horrible state,
open Task Manager.
Observe that

the scratch program has pegged a CPU.
Why is it draining CPU when there is nothing to do?

There’s a little extra step in the overall algorithm that
describes how input is processed:

If the input queue is waiting for another thread to finish
processing an input message,

and the current thread is processing an inbound sent message,
then mark the input

queue as no longer waiting.

If the input queue is waiting for another thread to finish
processing an input message,

then stop and return no message.

If the input queue is waiting for the current thread to
finish processing an input

message,
then mark the input queue as no longer waiting.

Look at the first message in the input queue which
satisfies the message range filter and

either belongs to some other thread
or belongs to the current thread and matches the

window handle filter.

If the message belongs to some other thread, then
(New!) nudge the other thread

to get it to
process the message,
then stop. Return no message to the caller.

Otherwise,
mark the input queue as waiting for the current
thread to finish

processing an input message,
and return the message we found.

If no such message exists,
then there is no input. Return no message.

Reminder: This is
a peek under the hood at how the sausage is made,
and the algorithm

described above is not contractual.

If the algorithm cannot return an input message because there
is a stuck input message that

belongs to another thread,
then the algorithm nudges that other thread
by setting the

appropriate queue state flag
(for example,
 QS_KEY if it is a stuck keyboard message).
If the

other thread is waiting for that type of message,
then the change in queue state will satisfy

the wait,
and the hope is that other thread will call
a message retrieval function to retrieve the

stuck message
and unclog the input queue.

http://grammar.about.com/od/qaaboutrhetoric/f/QAmixmetaphor.htm

8/8

That explains why the scratch program is pegging a processor.
The bad thread wants to peek

out a mouse message,
but it can’t because of the stuck mouse click event that
belongs to the

main thread,
so it nudges the main thread to say,
“Hey, I need you to process that mouse

event.”
The main thread wakes up and tries to pump messages,
but it can’t retrieve any input

because of the stuck
keyboard message.
The main thread therefore nudges the bad thread to

say,
“Hey, I need you to process that keyboard event.”

The two threads are therefore busy taking turns
yelling at each other,
saying, “Hey, you, you

need to get out of my way,”
and together they burn a CPU.

Now, this is admittedly a pathological program,
but it did do a pretty good job of highlighting

some of the
consequences of synchronous input caused by attaching
multiple threads to the

same input queue.
This is why it’s important that threads which share an input queue
all be

aware of the connection so that they don’t accidentally
cause trouble for each other.

Exercise:
How would you modify the above program to demonstrate the
“waiting for a

thread to finish processing a message” part
of the input message retrieval algorithm?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

