
1/5

June 5, 2013

When you share an input queue, you have to wait your
turn

devblogs.microsoft.com/oldnewthing/20130605-00

Raymond Chen

Now that we’ve had a quick introduction to asynchronous input, let’s look at some of the

details. Remember, this is a peek under the hood at how the sausage is made. The

algorithm described here is not part of the API contract and it can change at any time, as long

as it services the overall goal of serializing input.

Let’s start by looking at how things worked in the 16-bit world. Even though 16-bit Windows

didn’t use the term thread (since each application was single-threaded), I will still use the

term since that makes the transition to the 32-bit world more straightforward.

As a point of terminology, I say that a message belongs to a thread if the message targets a

window which belongs to that thread. Equivalently, the thread owns the message.

Now, the goal is to dispatch input messages in chronological order: Only the thread which

owns the next input message can retrieve it. All other input must wait their turn to come to

the front of the input queue.

In 16-bit Windows, all input gets added to a system-wide input queue, and the basic

algorithm used by PeekMessage and GetMessage for retrieving messages from the input

queue goes like this.

Look at the first message in the input queue:

If the message belongs to some other thread, then stop. Return no message to the

caller.

Otherwise, return the message we found.

If there are no messages in the input queue, then there is no input. Return no message.

All the rest is tweaking the boundary cases.

For example, suppose there are two input messages in the input queue, message 1 for

thread A, and message 2 for thread B. Thread A calls GetMessage , and the above algorithm

returns message 1 to thread A, at which point the new “first message” is message 2, and if

thread B calls GetMessage , it will get message 2.

https://devblogs.microsoft.com/oldnewthing/20130605-00/?p=4163
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/04/10423296.aspx
http://grammar.about.com/od/qaaboutrhetoric/f/QAmixmetaphor.htm

2/5

The catch is that according to the above algorithm, thread B can be told about message 2

before thread A has finished processing message 1. You’ve introduced a race condition that

breaks the rule that input is processed sequentially: Thread B can race ahead of thread A and

start processing message 2 before thread A can even get started processing message 1.

To fix this, we add a new state to the input queue that says “Yea, I just gave somebody an

input message, and I’m waiting for that thread to finish processing it before I will hand out

another input message.”

(New!) If the input queue is waiting for another thread to finish processing an input

message, then stop and return no message.

(New!) If the input queue is waiting for the current thread to finish processing an input

message, then mark the input queue as no longer waiting. (We finished processing it

and have come back for more!)

Look at the first message in the input queue:

If the message belongs to some other thread, then stop. Return no message to the

caller.

Otherwise, (New!) mark the input queue as waiting for the current thread to

finish processing an input message, and return the message we found.

If there are no messages in the input queue, then there is no input. Return no message.

Okay, we fixed a race condition. But now there’s a new problem: Suppose thread A retrieves

an input message (and therefore puts the input queue into the “waiting for thread A” state),

and then thread A sends a message to thread B, and thread B wants to display a dialog box or

a menu. According to the rules as we have them so far, we would have a deadlock: That

SendMessage call will not return to the first thread until the modal UI is complete, but the

modal UI cannot complete because the input queue is waiting for thread A to finish

processing the input message.

The fix for this special case is that if a thread asks for an input message, and it is handling an

inbound SendMessage , then the input queue declares that any in-progress input message

has finished processing. One way of interpreting this rule is to say, “If a thread sends a

message to another thread, then that implicitly completes input processing.”

(New!) If the input queue is waiting for another thread to finish processing an input

message, and the current thread is processing an inbound sent message, then mark the

input queue as no longer waiting.

If the input queue is waiting for another thread to finish processing an input message,

then stop and return no message.

If the input queue is waiting for the current thread to finish processing an input

message, then mark the input queue as no longer waiting.

3/5

Look at the first message in the input queue:

If the message belongs to some other thread, then stop. Return no message to the

caller.

Otherwise, mark the input queue as waiting for the current thread to finish

processing an input message, and return the message we found.

If there are no messages in the input queue, then there is no input. Return no message.

Recall that you are allowed to pass a message range filter and a window handle filter to the

PeekMessage and GetMessage functions. The above algorithm was developed on the

assumption that there was no message retrieval filter. First, let’s add the message range filter

to the algorithm:

If the input queue is waiting for another thread to finish processing an input message,

and the current thread is processing an inbound sent message, then mark the input

queue as no longer waiting.

If the input queue is waiting for another thread to finish processing an input message,

then stop and return no message.

If the input queue is waiting for the current thread to finish processing an input

message, then mark the input queue as no longer waiting.

Look at the first message in the input queue which satisfies the message range filter

(New!):

If the message belongs to some other thread, then stop. Return no message to the

caller.

Otherwise, mark the input queue as waiting for the current thread to finish

processing an input message, and return the message we found.

If there are no messages in the input queue which satisfy the message range filter

(New!), then there is no input. Return no message.

That wasn’t so hard. If you pass a message range filter, then we care only about messages that

pass the filter in determining which one is “at the head of the input queue”. Without this

additional rule, you wouldn’t be able to “peek into the future” to see if, for example, there is a

mouse message in the input queue sitting behind the keyboard message that is at the front of

the input queue.

Adding the window handle filter is a little trickier, because we still want to let input be

processed in order (among messages which satisfy the message range filter).

If the input queue is waiting for another thread to finish processing an input message,

and the current thread is processing an inbound sent message, then mark the input

queue as no longer waiting.

If the input queue is waiting for another thread to finish processing an input message,

then stop and return no message.

http://blogs.msdn.com/b/oldnewthing/archive/2013/03/22/10404367.aspx

4/5

If the input queue is waiting for the current thread to finish processing an input

message, then mark the input queue as no longer waiting.

Look at the first message in the input queue which satisfies the message range filter and

(New!) either belongs to some other thread or belongs to the current thread and

matches the window handle filter.

If the message belongs to some other thread, then stop. Return no message to the

caller.

Otherwise, mark the input queue as waiting for the current thread to finish

processing an input message, and return the message we found.

If no such message exists, then there is no input. Return no message.

In other words, the window handle is used to control which message is ultimately retrieved,

but it does not let you deny another thread access to input which matches the message range

filter.

Whew, that’s how 16-bit Windows dispatched input.

How do we port this to 32-bit Windows and asynchronous input?

First, we give each thread group its own input queue, rather than having a single system-wide

input queue.

Second, whenever the above algorithm says the input queue, change it to say the calling

thread’s input queue.

And that’s it!

In the absence of thread attachment, each thread has its own input queue, so most of the

above rules have no effect. For example, You will never see a message that belongs to another

thread, because messages that belong to other threads go into those other threads’ input

queues, not yours. You will never find that your input queue is waiting for another thread,

because no other threads have access to your input queue. In the case where there is only one

thread associated with an input queue, the algorithm simplifies to

Return the first message in the input queue that satisfies both the message range filter

and the window handle filter, if any.

It’s only if you start attaching threads to each other that you have multiple threads associated

with a single input queue, and then all these extra rules start to have an effect.

Next time, we’ll explore some of the consequences of synchronous input by writing some

poorly-behaving code and observing how the system responds. Along the way, we’ll discover

an interesting paradox introduced by the above algorithm.

5/5

Exercise: The alternative interpretation I gave above does not match the description of the

rule, because the rule allows any thread processing an inbound SendMessage to clear the

input queue’s wait state. Why does the actual rule permit any thread clear the wait state,

instead of first checking that the inbound SendMessage is coming from the thread that the

input queue is waiting for?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

