
1/4

May 31, 2013

Posted messages are processed ahead of input
messages, even if they were posted later

devblogs.microsoft.com/oldnewthing/20130531-00

Raymond Chen

Regardless of which interpretation you use,
it remains the case that posted messages
are

processed ahead of input messages.
Under the MSDN interpretation,
posted messages and

input messages all go into the message queue,
but
posted messages are pulled from the

queue before input messages.
Under the Raymond interpretation,
posted messages and input

messages are kept in separate queues,
and the message retrieval functions will look first in

the posted
message queue before looking in the input queue.

Let’s run an experiment to see posted messages get processed
ahead of input messages.
Start

with the
new scratch program
and make these changes:

https://devblogs.microsoft.com/oldnewthing/20130531-00/?p=4203
http://blogs.msdn.com/b/oldnewthing/archive/2013/05/30/10422199.aspx
http://msdn.microsoft.com/library/ms644936
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/22/410773.aspx

2/4

#include <strsafe.h>

class RootWindow : public Window

{

public:

virtual LPCTSTR ClassName() { return TEXT(“Scratch”); }

static RootWindow *Create();

void AppendText(LPCTSTR psz)

{
 ListBox_SetCurSel(m_hwndChild,

 ListBox_AddString(m_hwndChild, psz));

}

void AppendFormat(LPCTSTR pszFormat, …)

{
 va_list ap;

 va_start(ap, pszFormat);

 TCHAR szMsg[256];

 StringCchVPrintf(szMsg, ARRAYSIZE(szMsg), pszFormat, ap);

 AppendText(szMsg);

 va_end(ap);

}

void LogMessage(const MSG *pmsg)

{
 AppendFormat(TEXT(“%d\t%04x\t%p\t%p”),

 pmsg->time,

 pmsg->message,

 pmsg->wParam,

 pmsg->lParam);

}

…
};

LRESULT RootWindow::OnCreate()

{

m_hwndChild = CreateWindow(

 TEXT(“listbox”), NULL,

 LBS_HASSTRINGS | LBS_USETABSTOPS |

 WS_CHILD | WS_VISIBLE | WS_TABSTOP | WS_VSCROLL,

 0, 0, 0,0, GetHWND(), (HMENU)1, g_hinst, 0);

return 0;

}

3/4

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

 …

 while (GetMessage(&msg, NULL, 0, 0)) {

 switch (msg.message) {

 case WM_KEYDOWN:

 prw->AppendText(TEXT(“Sleeping”));

 UpdateWindow(prw->GetHWND());

 Sleep(1000);

 prw->AppendText(TEXT(“Posting”));

 PostMessage(prw->GetHWND(), WM_USER, 0, 0);

 break;

 case WM_KEYUP:

 case WM_USER:

 prw->LogMessage(&msg);

 break;

 }

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 …

}

This program creates a list box so we can display some output.
In the message loop, it sniffs

at all the queued messages and
does the following:

If the message is WM_KEYUP or
 WM_USER , then it logs the message timestamp
and

some parameters.

If the message is WM_KEYDOWN ,
then it sleeps without processing messages for one

second,
and then posts a WM_USER message
to the main window (which ignores it).

Run this program, and then tap the shift key.

The window gets a WM_KEYDOWN
for the shift key.
It sleeps for one second (plenty of time for

you to release
the shift key),
and then posts a WM_USER message.

The WM_USER and WM_KEYUP
messages arrive, and observe via the log window
that they

arrive out of order.
 WM_USER message arrived first!

That’s because of the rule that says that
posted messages are processed ahead of input

messages.
(Depending on how you want to look at it, you might say
that posted messages are

“called out for preferential treatment”
in the queue,
or you might say that posted messages

are placed in a different
queue from input messages, and the posted message queue has

higher priority.)

4/4

Observe also that the timestamp on the WM_USER
message is greater than the timestamp on

the
 WM_KEYUP message,
because the key went up before the WM_USER
message was posted.

Time has gone backward.

Make the following change to our program:
Change the message we post from
 WM_USER to

WM_KEYUP :

 PostMessage(hwnd, WM_KEYUP, 0, 0);

Run the program again, and again tap the shift key.
Observe that the posted WM_KEYUP

message
is processed ahead of the WM_KEYUP input message.
(You can see the difference

because we posted the
 WM_KEYUP message with wParam
and lParam both zero,
whereas

the
 WM_KEYUP input message has information in
those parameters.)

This little demonstration also reinforces some other things we already knew.
For example, it

once again shows that the input manager
does not wiretap your posted messages.
If you post

a
 WM_KEYUP message,
it is treated like a posted message not an input message.
We saw

earlier that
posting a keyboard message does not update internal input states.
The keyboard

shift states are not updated to match your prank call message.
If somebody calls GetQueue‐

Status ,
they will not be told that there is input waiting.
It will not wake a
 MsgWaitFor‐

MultipleObjects function
that is waiting for QS_INPUT .
And as we saw here today,
the

message gets processed out of order.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/05/24/10421022.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/05/30/423202.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

