
1/2

May 23, 2013

Even though mouse-move, paint, and timer messages are
generated on demand, it’s still possible for one to end up
in your queue

devblogs.microsoft.com/oldnewthing/20130523-00

Raymond Chen

We all know that the generated-on-demand messages like WM_MOUSEMOVE , WM_PAINT , and

WM_TIMER messages are not posted into the queue when the corresponding event occurs,

but rather are generated by GetMessage or PeekMessage when they detect that they are

about to conclude that there is no message to return and the generated-on-demand message

can be returned. When this happens, the window manager creates the message on the fly,

posts it into the queue, and hey, how about that, the GetMessage or PeekMessage

function now has a message to return!

Note that this auto-generate can happen even though the queue is not empty, because the

message filters control what messages in the queue can be returned. For example, suppose

the message queue contains the following messages:

{ hwnd1, WM_CLIPBOARDUPDATE }

{ hwnd2, WM_LBUTTONDOWN }

(Note that the above diagram is not strictly correct, because the WM_LBUTTONDOWN message

goes into the input queue, not the message queue, but the distinction is not important here.)

Suppose you now call GetMessage(&msg, hwnd1, WM_MOUSEFIRST, WM_MOUSELAST) .

None of the messages in the queue satisfy the message filter: The first message meets the

window filter, but the message is not in range. The second message meets the message range

filter, but does not meet the window filter. The GetMessage function is about to give up and

say “I guess I need to wait for a message,” but before it finally concedes defeat, it says, “Hang

on there. I see a note that tells me that I should auto-generate a WM_MOUSEMOVE message for

window hwnd1 . And that message satisfies the message filter. I’ll generate it now!”

The GetMessage function posts the { hwnd1, WM_MOUSEMOVE } message into the queue

(assigning it the current time as the timestamp), and then it says, “Hey, lookie here! A

message that satisfies the filter!” It then removes the message from the queue and returns it.

https://devblogs.microsoft.com/oldnewthing/20130523-00/?p=4273
http://blogs.msdn.com/b/oldnewthing/archive/2011/12/19/10249000.aspx

2/2

(Note that this algorithm is conceptual. It doesn’t actually work this way internally. In

particular, the window manager does not literally talk to itself, at least not out loud.)

Okay, so in the GetMessage case, even if the message conceptually goes into the queue, it

comes right back out immediately, so you never actually observe it there.

Now repeat the exercise with the PeekMessage function. As before, the WM_MOUSEMOVE

message is posted into the queue with the current time as the timestamp. If the PM_REMOVE

flag is passed, then the message is removed from the queue and returned, just like Get‐

Message . If the PM_NOREMOVE flag is passed, then things get interesting: The message is

returned but not removed from the queue.

You now have a WM_MOUSEMOVE message physically residing in the queue!

This is the answer to the puzzle: If auto-generated messages are generated on demand, how

is it possible for them to end up sitting in your message queue?

I recall a bug investigation from nearly two decades ago which basically boiled down to this

issue: Somebody PM_NOREMOVE ‘d an auto-generated message and not only left it in the

queue, but kept generating new ones without processing the old ones. Eventually, the

message queue filled up.

(Note that this is also the answer to the puzzle: If WM_MOUSEMOVE is generated on demand,

how can it be possible to retrieve a WM_MOUSEMOVE message with a timestamp different from

the current time?)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

