
1/4

May 16, 2013

Untangling the confusingly-named WM_UPDATEUISTATE
and WM_CHANGEUISTATE messages

devblogs.microsoft.com/oldnewthing/20130516-00

Raymond Chen

I always get confused by the WM_UPDATEUISTATE and WM_CHANGEUISTATE messages, and I

have to go figure them out each time I need to mess with them. So this time, I’m going to

write it down so I don’t forget. Because the act of writing it down helps me to remember.

It’s like in school, where the teacher says, “This is a closed-book, closed-notes exam, but you

are allowed to bring one piece of standard 8½″×11″ paper with you, on which you can write

anything you like. No funny business.” You work really hard to create the ultimate sheet of

paper to bring to the exam, and then it turns out that during the exam, you barely refer to it

at all. Because the act of deciding what to put on the cheat sheet made you remember the

material.

Part of the problem with the messages WM_UPDATEUISTATE and WM_CHANGEUISTATE is

their confusing names, because to most people update and change are basically the same

concept. The difference is the direction the message travels. Before we look at that, let’s look

at the mysterious WPARAM .

The WPARAM specifies what action you want to perform (initialize, set, or clear) and the

target of the action (focus, accelerators, or both).

Action Meaning

UIS_SET Set the flag (hide the indicator).

UIS_CLEAR Clear the flag (show the indicator).

UIS_INITIALIZE Set or clear the flag based on whether the last input event was
mouse (set) or keyboard (clear).

Setting a flag hides the corresponding indicator. For example, if you have a UIS_SET for

UISF_HIDEFOCUS , that means that you want to hide focus indicators.

https://devblogs.microsoft.com/oldnewthing/20130516-00/?p=4343

2/4

Clearing a flag shows the corresponding indicator. For example, if you have a UIS_CLEAR

for UISF_HIDEFOCUS , that means that you want to show focus indicators.

Yes, it’s a bit of a double-negative situation.

Each window has its own internal state that remembers which indicators have been hidden

for that window. You can query this state by sending the window a WM_QUERYUISTATE

message.

The WM_UPDATEUISTATE message travels down the tree: When a window receives the

WM_UPDATEUISTATE message, it updates its state according to the WPARAM and then

forwards the message to its children. Therefore, if you want to change the state for an entire

window tree, you can send the WM_UPDATEUISTATE message to the top-level window, and

the message will be delivered to that window and all its children.

It’s called update because it says, “Okay, listen up everybody, this is what we’re going to do.”

The WM_CHANGEUISTATE message is more like a change request. It travels up the tree: When

a window receives the message, it sees if the state being requested matches the window’s

current state. If so, then processing stops since there is nothing to change. Otherwise, the

window forwards the message to its parent. The idea here is to push the change request up

the tree until it finds the top-level window.

If a top-level window receives a WM_CHANGEUISTATE message for a state change that actually

changes something, it turns around and sends itself a WM_UPDATEUISTATE message, which

as we saw before, tells the entire window tree to set its indicator state to the value specified.

Okay, let’s draw a picture. Suppose we have a top-level window with two children, and

suppose that everybody starts out with all indicators hidden.

 A

hideFocus=1

hideAccel=1

B

hideFocus=1

hideAccel=1

 C

hideFocus=1

hideAccel=1

3/4

Window B decides that it wants to show accelerators, say because the user tapped the Alt

key. It sends itself a WM_CHANGEUISTATE message with a wParam of

MAKEWPARAM(UIS_CLEAR, UISF_HIDEACCEL) .

The WM_CHANGEUISTATE message handler for Window B sees that the UISF_HIDEACCEL

flag is set, so the clear action is meaningful. It forwards the request to its parent, Window A.

The WM_CHANGEUISTATE message handler for Window A also sees that the UISF_HIDE‐

ACCEL flag is set, so the clear action is meaningful. Since it has no parent, Window A

converts the WM_CHANGEUISTATE message to a WM_UPDATEUISTATE message and sends it

to itself.

The WM_UPDATEUISTATE message handler for Window A sees that it is being told to clear the

UISF_HIDEACCEL flag, so it clears the flag and then forwards the mesage to both its

children.

Each of the child windows B and C receive the WM_UPDATEUISTATE message and see that

they are also being told to clear the UISF_HIDEACCEL flag, so they do so. Those windows

have no children of their own, so message processing stops. By this mechanism, Window B

has managed to convince all the other windows in the hierarchy to clear the UISF_HIDE‐

ACCEL flag.

 A

hideFocus=1

hideAccel=0

B

hideFocus=1

hideAccel=0

 C

hideFocus=1

hideAccel=0

Now, suppose that Window C also decides to clear the accelerator indicator. It does the same

thing as Window B and sends itself a WM_CHANGEUISTATE message with a wParam of

MAKEWPARAM(UIS_CLEAR, UISF_HIDEACCEL) . This time, the WM_CHANGEUISTATE message

handler for Window C sees that the UISF_HIDEACCEL flag is already clear, so the clear

action is redundant. Message processing stops.

4/4

These two examples show the flow of the UI state change messages. When somebody wants

to suggest a change to the UI state, they send themselves a WM_CHANGEUISTATE message

with a description of what they want to change. The above algorithm then kicks in to decide

whether the change is meaningful, and if so, it notifies all the other windows in the hierarchy

about the new state.

Next time, we’ll look at how this whole indicator state thing gets off the ground.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

