
1/3

May 9, 2013

Why am I getting LNK2019 unresolved external for my
inline function?

devblogs.microsoft.com/oldnewthing/20130509-00

Raymond Chen

More than once, I’ve seen somebody confused by how inline functions work.

I have implemented a few inline functions in one of my cpp files,
and I want to use it from other
cpp files,
so I declare them as extern .
But sometimes I will get linker error 2019 (unresolved
external)
for the inline functions.

// a.cpp

inline bool foo() { return false; }

// b.cpp

extern bool foo();

bool bar() { return foo(); }

Yup, that’s right.
The C++ language says in section 3.2(3) [C++03, C++11],
and repeats in

section 7.1.2(4) [C++03, C++11],

An inline function shall be defined
in every translation unit in which it is used.

(A translation unit is the technical term for what
we intuitively can think of as a single cpp

file and all the
files that it #include s.)

By putting the definition of foo in a cpp file,
you make its definition visible only to that cpp

file and
no other cpp file.
When you compile b.cpp ,
sees that you declared it as a normal

external function,
so it generates a call to it like a normal external function.
On the other

hand, when you compile a.cpp ,
the compiler sees that foo is an inline function,
so it says,

“I don’t need to generate any code yet.
Inline functions generate code at the point they are

invoked,
not at the point they are defined.”

https://devblogs.microsoft.com/oldnewthing/20130509-00/?p=4413

2/3

Result:
 b.cpp asks for a definition of foo ,
but nobody provides it,
because the two

declarations were inconsistent.
This is a violation of
7.1.2(4) [C++03, C++11]
which says
“If a

function with external linkage is
declared inline in one translation unit,
it shall be declared

inline in all translation units in which it appears;
no diagnostic is required.”
The magic

phrase no diagnostic is required means that the compiler
is not even required to report the

error.
(You’re lucky that it did!)

This rule makes sense when you think about the classical model of
compiling:
The compiler

logically
takes the source code and sends it through the
preprocessor.
The result (the

translation unit)
then goes into the compiler proper,
which learns about structures and

classes and functions,
and it generates code based on what it sees in that
translation unit.
The

compiler does not have access to other translation units,
so when compiling a.cpp it can’t

peek into
 b.cpp and say,
“Hm, it looks like somebody is going to be calling foo
as a non-

inline function,
so let me also generate a non-inline version of it.”
And similarly,
when the

compiler is generating code for the
 bar function,
it doesn’t peek into a.cpp and say,
“Hm,

it looks like foo is actually an inline
function.
Let me go steal its definition from that other

file.”

The solution is to
move the definition of the inline function into the header file.

Now you can solve this problem:

http://www.parashift.com/c++-faq-lite/inline-functions.html#faq-9.6

3/3

I’m getting error LNK2019 for my GetValue method.
Can somebody explain why?

// Widget.h

class Widget

{

public:

Widget(int initialValue) : value_(initialValue) { }

void SetValue(int value);

inline int GetValue();

private:

int value_;

};

// Widget.cpp

#include <widget.h>

inline int Widget::GetValue()

{

return value_;

}

// Other.cpp

void something()

{

Widget widget(42);

printf(“%d”, widget.GetValue());

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

