
1/3

May 8, 2013

Mathematical formulas are designed to be pretty, not to
be suitable for computation

devblogs.microsoft.com/oldnewthing/20130508-00

Raymond Chen

When you ask a mathematician to come up with a formula to solve a problem, you will get

something that looks pretty, but that doesn’t mean that it lends itself well to computation.

For example, consider the binomial coefficient, traditionally written C or C(n, k), and in

more modern notation as (   ). If you ask a mathematician for a formula for the binomial

coefficient, you will get the elegant reply

(n) = n!

k k!(n − k)!

(That took forever to format. I will use the traditional notation from now on purely for

typographical expediency.)

This is a very beautiful formula, but it’s horrible for actual computation because the factorials

will be very expensive and are likely to overflow your integer data type even at low values of

n. (So you may as well just use a lookup table.) And the k! in the denominator exactly cancels

the first k factors in n!, so most of your work in multiplying the numbers together is just

going to be undone by the division.

For computation, you’re much better off using the recurrence C(n, k) = C(n − 1, k − 1) × n ∕ k.

This is the recurrence you learned in high school when you had to calculate binomial

coefficients by hand: You start with 1 · xⁿ and then to get the next coefficient, you multiply by

the exponent on the x and divide by the current position (starting at 1), then decrement the

exponent. For example, let’s calculate the binomial coefficients C(8, k).

1 · x⁸ bring down the 8 and divide by 1 (resulting in 1 × 8 ÷ 1 = 8), then decrement
the exponent

n k

n
k

https://devblogs.microsoft.com/oldnewthing/20130508-00/?p=4423

2/3

8 · x⁷ bring down the 7 and divide by 2 (resulting in 8 × 7 ÷ 2 = 28), then decrement
the exponent

28 · x⁶ bring down the 6 and divide by 3 (resulting in 28 × 6 ÷ 3 = 56), then
decrement the exponent

56 · x⁵ bring down the 5 and divide by 4 (resulting in 56 × 5 ÷ 4 = 70), then
decrement the exponent

70 · x⁴ bring down the 4 and divide by 5 (resulting in 70 × 4 ÷ 5 = 56), then
decrement the exponent

56 · x³ bring down the 3 and divide by 6 (resulting in 56 × 3 ÷ 6 = 28), then
decrement the exponent

28 · x² bring down the 2 and divide by 7 (resulting in 28 × 2 ÷ 7 = 8), then decrement
the exponent

8 · x¹ bring down the 1 and divide by 8 (resulting in 8 × 1 ÷ 8 = 1), then decrement
the exponent

1 · x⁰ bring down the 0, which makes everything zero

(Am I the only person who calculated binomial coefficients by hand?) Notice that the

calculations in the second half are the exact inverse of the calculations of the first half, so you

only have to do the computations halfway, and then you can just mirror the rest. This is just

another way of seeing that C(n, k) = C(n, n − k).

This technique lets you evaluate C(50, 7) = 99884400 without overflowing a 32-bit integer.

Often people will ask for an efficient way of calculating factorials, when in fact they don’t

really need factorials (which is a good thing, because that would require a bignum package);

they are really just trying to evaluate a formula that happens to be expressed mathematically

with factorials (because factorials are pretty).

Another place pretty formulas prove unsuitable for computation is in Taylor series. The

denominator of a Taylor series is typically a factorial, and the numerator can get quite large,

too. For example, exp(x) = Σ xⁿ ∕ n!. Instead of calculating the power and factorial at each

term, use the recurrence

x = x x

n! n (n − 1)!

In compiler-terms, you’re strength-reducing the loop.

n n−1

3/3

Of course, another problem is that you are adding large numbers first, and then adding

smaller numbers later. From a numerical analysis point of view, you should add the smaller

numbers first so that they can retain significance longer.

As an example, consider that you have to add the following numbers: 999, and ten 0.1’s, and

suppose your floating point format is good to only three significant digits. If you added them

largest to smallest, you would get this:

999

999 + 0.1 = 999 (three sigificant digits)

999 + 0.1 = 999 (three sigificant digits)

… and so on …

Your final total will be 999. But if you added the smaller numbers first, then you would get

0.1

0.1 + 0.1 = 0.2

0.2 + 0.1 = 0.3

… and so on …

0.9 + 0.1 = 1

1 + 999 = 1000

By adding the small numbers first, you gave them a chance to accumulate to something

meaningful before the big number came along and swamped them.

Remember, the way a formula is written on paper is not necessarily the best way of

computing it. (And if the formula was written by a mathematician, it is almost certainly not!)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

