
1/2

April 25, 2013

If you’re going to use an interlocked operation to
generate a unique value, you need to use it before it’s
gone

devblogs.microsoft.com/oldnewthing/20130425-00

Raymond Chen

Is the
 InterlockedIncrement function broken?
One person seemed to think so.

We’re finding that the
 InterlockedIncrement is producing
duplicate values.
Are there are
any know bugs in
 InterlockedIncrement ?

Because of course when something doesn’t work,
it’s because you are the victim of a vast

conspiracy.
There is a fundamental flaw in the
 InterlockedIncrement function that
only

you can see.
You are not a crackpot.

LONG g_lNextAvailableId = 0;

DWORD GetNextId()

{

 // Increment atomically

 InterlockedIncrement(&g_lNextAvailableId);

 // Subtract 1 from the current value to get the value

 // before the increment occurred.

 return (DWORD)g_lNextAvailableId – 1;

}

Recall that
 InterlockedIncrement
function increments a value atomically
and returns the

incremented value.
If you are interested in the result of the increment,
you need to use the

return value directly
and not try to read the variable you incremented,
because that variable

may have been modified by another
thread in the interim.

Consider what happens when two threads call
 GetNextId
simultaneously (or nearly so).

Suppose the initial value of g_lNextAvailableId is 4.

https://devblogs.microsoft.com/oldnewthing/20130425-00/?p=4553
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx

2/2

First thread calls
 InterlockedIncrement
to increment from 4 to 5.
The return value

is 5.

Second thread calls
 InterlockedIncrement
to increment from 5 to 6.
The return

value is 6.

First thread ignores the return value and instead
reads the current value of
 g_lNext‐

AvailableId , which is 6.
It subtracts 1, leaving 5, and returns it.

Second thread ignores the return value and instead
reads the current value of

g_lNextAvailableId , which is still 6.
It subtracts 1, leaving 5, and returns it.

Result:
Both calls to
 GetNextId return 5.
Interpretation:
“ InterlockedIncrement is

broken.”

Actually,
 InterlockedIncrement is working just fine.
What happened is that the code

threw away the unique information
that
 InterlockedIncrement returned
and instead

went back to the shared variable,
even though the shared variable changed its value
in the

meantime.

Since this code cares about the result of the increment,
it needs to use the value returned
by

InterlockedIncrement .

DWORD GetNextId()

{

 // Increment atomically and subtract 1 from the

 // incremented value to get the value before the

 // increment occurred.

 return (DWORD)InterlockedIncrement(&g_lNextAvailableId) – 1;

}

Exercise: Criticize this implementation of
 IUnknown::Release :

STDMETHODIMP_(ULONG) CObject::Release()

{

InterlockedDecrement(&m_cRef);

if (m_cRef == 0)

{
 delete this;

 return 0;

}
return m_cRef;

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

