Why does CoCreatelnstance work even though my thread
never called Colnitialize? The curse of the implicit MTA

=. devblogs.microsoft.com/oldnewthing/20130419-00

April 19, 2013

Raymond Chen

While developing tests, a developer observed erratic behavior with respect to CoCreate-
Instance :

In my test, [call CoCreateInstance and it fails with CO_E_NOTINITIALIZED . Fair
enough, because my test forgot to call CoInitialize .

But then I went and checked the production code: In response to a client request, the production
code creates a brand new thread to service the request. The brand new thread does not call Co-
Initialize ,yetits callto CoCreateInstance succeeds. How is that possible? I would
expect the production code to also geta CO_E_NOTINITIALIZED error.

I was able to debug this psychically, but only because I knew about the implicit MTA.

The implicit MTA is not something I can find very much documentation on, except in the
documentation for the APPTYPEQUALIFIER enumeration, where it mentions:

[The APTTYPEQUALIFIER _IMPLICIT _MTA] qualifier is only valid when the pAptType
parameter of the CoGetApartmentType function specifies APTTYPE MTA on return. A
thread has an implicit MTA apartment type if it does not initialize the COM apartment itself,
and if another thread has already initialized the MTA in the process. This qualifier informs the
API caller that the MTA of the thread is implicitly inherited from other threads and is not
initialized directly.

Did you get that? If any thread in the process calls CoInitialize[Ex] with the

COINIT MULTITHREADED flag, then that not only initializes the current thread as a member
of the multi-threaded apartment, but it also says, “Any thread which has never called Co-
Initialize[Ex] is also part of the multi-threaded apartment.”

Further investigation revealed that yes, some other thread in the process called Co-
InitializeEx(O®, COINIT_MULTITHREADED) , which means that the thread which forgot to
call coInitialize was implicitly (and probably unwittingly) placed in the MTA.

1/2

https://devblogs.microsoft.com/oldnewthing/20130419-00/?p=4613
http://msdn.microsoft.com/library/dd542638

The danger of this implicit MTA, of course, is that since you didn’t know you were getting it,
you also don’t know if you're going to lose it. If that other thread which called co-
InitializeEx(O®, COINIT_MULTITHREADED) finally gets around to calling Coun-
initialize ,then it will tear down the MTA, and your thread will have the MTA rug ripped
out from under it.

Moral of the story: If you want the MTA, make sure you ask for it explicitly. And if you forget,
you may end up in the implicit MTA, whether you wanted it or not. (Therefore, conversely, if
you don’t want the MTA, make sure to deny it explicitly!)

Exercise: Use your psychic debugging skills to diagnose the following problem. “When my
code calls GetOpenFileName , it behaves erratically. I saw a Knowledge Base article that
says that this can happen if I initialize my thread in the multi-threaded apartment, but my
thread does not do that.”

-
Raymond Chen

Follow

2/2

http://support.microsoft.com/kb/287087
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

