
1/4

April 15, 2013

Using opportunistic locks to get out of the way if
somebody wants the file

devblogs.microsoft.com/oldnewthing/20130415-00

Raymond Chen

Opportunistic locks allow you to be notified when somebody else
tries to access a file you

have open.
This is usually done if you want to use a file
provided nobody else wants it.

For example, you might be a search indexer that wants to extract
information from a file, but

if somebody opens the file for writing,
you don’t want them to get Sharing Violation.
Instead,

you want to stop indexing the file and let the other person
get their write access.

Or you might be a file viewer application
like
ildasm,
and you want to let the user update the

file (in ildasm’s case,
rebuild the assembly) even though you’re viewing it.
(Otherwise, they

will get an error from the compiler saying
“Cannot open file for output.”)

Or you might be Explorer, and you want to abandon generating
the preview for a file
if

somebody tries to delete it.

(Rats I fell into the trap of trying to motivate a Little Program.)

Okay, enough motivation. Here’s the program:

https://devblogs.microsoft.com/oldnewthing/20130415-00/?p=4663
http://msdn.microsoft.com/en-US/library/f7dy01k1(v=VS.80).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/09/07/10347136.aspx

2/4

#include <windows.h>

#include <winioctl.h>

#include <stdio.h>

OVERLAPPED g_o;

REQUEST_OPLOCK_INPUT_BUFFER g_inputBuffer = {

 REQUEST_OPLOCK_CURRENT_VERSION,

 sizeof(g_inputBuffer),

 OPLOCK_LEVEL_CACHE_READ | OPLOCK_LEVEL_CACHE_HANDLE,

 REQUEST_OPLOCK_INPUT_FLAG_REQUEST,

};

REQUEST_OPLOCK_OUTPUT_BUFFER g_outputBuffer = {

 REQUEST_OPLOCK_CURRENT_VERSION,

 sizeof(g_outputBuffer),

};

int __cdecl wmain(int argc, wchar_t **argv)

{

 g_o.hEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);

 HANDLE hFile = CreateFileW(argv[1], GENERIC_READ,

 FILE_SHARE_READ, nullptr, OPEN_EXISTING,

 FILE_FLAG_OVERLAPPED, nullptr);

 if (hFile == INVALID_HANDLE_VALUE) {

 return 0;

 }

 DeviceIoControl(hFile, FSCTL_REQUEST_OPLOCK,

 &g_inputBuffer, sizeof(g_inputBuffer),

 &g_outputBuffer, sizeof(g_outputBuffer),

 nullptr, &g_o);

 if (GetLastError() != ERROR_IO_PENDING) {

 // oplock failed

 return 0;

 }

 DWORD dwBytes;

 if (!GetOverlappedResult(hFile, &g_o, &dwBytes, TRUE)) {

 // oplock failed

 return 0;

 }

3/4

 printf(“Cleaning up because somebody wants the file…\n”);

 Sleep(1000); // pretend this takes some time

 printf(“Closing file handle\n”);

 CloseHandle(hFile);

 CloseHandle(g_o.hEvent);

 return 0;

}

Run this program with the name of an existing file
on the command line,
say
 scratch

x.txt .
The program will wait.

In another command window, run the command
 type x.txt .
The program keeps waiting.

Next, run the command
 echo hello > x.txt .
Now things get interesting.

When the command prompt opens x.txt for writing,
the DeviceIoControl call

completes.
At this point we print the Cleaning up… message.

To simulate the program taking a little while to clean up,
we sleep for one second.
Observe

that the command prompt
has not yet returned.
Instead of immediately failing the request to

open for writing
with a sharing violation,
the kernel puts the open request on hold to give our

program
time to clean up and close our handle.

Finally, our simulated clean-up is complete, and we close
the handle.
At this point, the kernel

allows the command processor to proceed
and open the file for writing so it can write hello

into it.

That’s the basics of opportunistic locks,
but your program will almost certainly not be

structured this way.
You will probably not wait synchronously on the overlapped I/O
but

rather have the completion queued up to a completion function,
an I/O completion port,
or

have a thread pool task listen on the event handle.
When you do that, remember that you

need to keep
the OVERLAPPED structure as well as the
 REQUEST_OPLOCK_INPUT_BUFFER

and
 REQUEST_OPLOCK_OUTUT_BUFFER
structures valid until the I/O completes.

(You may find the
 CancelIo function handy to try to accelerate
the clean-up of the file

handle and any other actions that
are dependent upon it.)

You can read more about
opportunistic locks on MSDN.
Note that there are limitations on

explicitly-managed
opportunistic locks;
for example, they don’t work across the network.

Raymond Chen

http://msdn.microsoft.com/library/aa365433.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

