
1/5

April 8, 2013

The managed way to retrieve text under the cursor
(mouse pointer)

devblogs.microsoft.com/oldnewthing/20130408-00

Raymond Chen

Today’s Little Program is a managed version of the
text-extraction program from
several

years ago.
It turns out that it’s pretty easy in managed code
because the accessibility folks sat

down and wrote a whole framework for you,
known as
UI Automation.

(Some people are under the mistaken impression that UI Automation
works only for

extracting data from applications written in managed code.
That is not true.
Native code can

also be a UI Automation provider.
The confusion arises because the name UI Automation is

used
both for
the underlying native technology
as well as for
the managed wrappers.)

https://devblogs.microsoft.com/oldnewthing/20130408-00/?p=4733
http://blogs.msdn.com/b/oldnewthing/archive/2004/04/23/118893.aspx
http://msdn.microsoft.com/library/ms747327
http://msdn.microsoft.com/library/ee684009
http://msdn.microsoft.com/library/ms747327

2/5

using System;

using System.Windows;

using System.Windows.Forms;

using System.Windows.Automation;

class Program

{

static Point MousePos {

 get { var pos = Control.MousePosition;

 return new Point(pos.X, pos.Y); }

}

public static void Main()

{
 for (;;) {

 AutomationElement e = AutomationElement.FromPoint(MousePos);

 if (e != null) {

 Console.WriteLine(“Name: {0}”,

 e.GetCurrentPropertyValue(AutomationElement.NameProperty));

 Console.WriteLine(“Value: {0}”,

 e.GetCurrentPropertyValue(ValuePattern.ValueProperty));

 Console.WriteLine();

 }

 System.Threading.Thread.Sleep(1000);

 }

}
}

We use the FromPoint method to locate the
automation element under the current mouse

position and print
its name and value.

Well that was pretty simple.
I may as well do something a little more challenging.
Since the

feature is known as UI Automation,
I’ll try automating the Run dialog by
programmatically

entering some text and then clicking OK.

3/5

using System.Windows.Automation;

class Program

{

static AutomationElement FindById(AutomationElement root, string id)

{
 return root.FindFirst(TreeScope.Children,

 new PropertyCondition(AutomationElement.AutomationIdProperty, id));

}

public static void Main()

{
 var runDialog = AutomationElement.RootElement.FindFirst(

 TreeScope.Children,

 new PropertyCondition(AutomationElement.NameProperty, “Run”));

 if (runDialog == null) return;

 var commandBox = FindById(runDialog, “12298”);

 var valuePattern = commandBox.GetCurrentPattern(ValuePattern.Pattern)

 as ValuePattern;

 valuePattern.SetValue(“calc”);

 var okButton = FindById(runDialog, “1”);

 var invokePattern = okButton.GetCurrentPattern(InvokePattern.Pattern)

 as InvokePattern;

 invokePattern.Invoke();

}
}

The program starts by looking for a window named Run
by performing a children search on

the root element
for an element whose Name property is equal to
 “Run” .

Assuming it finds it,
the program looks for a child element whose
automation ID
is

“12298” .
How did I know that was the automation ID to use?
The documentation for UI

Automation
suggests using a tool like UI Spy to look up the automation IDs.

Mind you, since I am automating something outside my control,
I have to accept that the

automation ID may change in future
versions of Windows.
(It’s not like they check with me

before making changes.)
But this is a Little Program, not a production-level program,
so

that’s a limitation I will accept,
since I’m the only person who’s going to use this program,

and if it stops working, I know who to talk to (namely, me).

Anyway, afer we find the command box, I ask for its Value pattern.
Automation elements can

support patterns
which expose additional properties and methods specific to particular
uses.

In our case, the Value pattern lets us get and set the value
of an editable object,
so we use the

http://msdn.microsoft.com/en-us/library/system.windows.automation.automationelement.automationelementinformation.automationid.aspx
http://msdn.microsoft.com/en-us/library/aa349646.aspx

4/5

SetValue method to set the
text in the Run dialog to calc.

Next, we look for the OK button,
which UI Spy told me had automation ID 1.
We ask for the

Invoke pattern on the button
and then call the Invoke method.
The Invoke pattern is the

pattern for objects that do
just one thing,
and Invoke means “Do
that thing that you do.”

Open the Run dialog and run this program.
It should programmatically set the command line

to
calc, then click OK.
Hopefully, this will run the Calculator.

Just for fun, here’s another program that just dumps the
automation properties and patterns

for whatever object
is under the mouse cursor:

http://www.imdb.com/title/tt0117887/

5/5

using System;

using System.Windows;

using System.Windows.Forms;

using System.Windows.Automation;

class Program

{

static Point MousePos {

 get { var pos = Control.MousePosition;

 return new Point(pos.X, pos.Y); }

}

public static void Main()

{
 for (;;) {

 AutomationElement e = AutomationElement.FromPoint(MousePos);

 if (e != null) {

 foreach (var prop in e.GetSupportedProperties()) {

 object o = e.GetCurrentPropertyValue(prop);

 if (o != null) {

 var s = o.ToString();

 if (s != “”) {

 var id = o as AutomationIdentifier;

 if (id != null) s = id.ProgrammaticName;

 Console.WriteLine(“{0}: {1}”, Automation.PropertyName(prop), s);

 }

 }

 }

 foreach (var pattern in e.GetSupportedPatterns()) {

 Console.WriteLine(“Pattern: {0}”, Automation.PatternName(pattern));

 }

 Console.WriteLine();

 }

 System.Threading.Thread.Sleep(1000);

 }

}
}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

