
1/4

April 5, 2013

How do I wait until all processes in a job have exited?
devblogs.microsoft.com/oldnewthing/20130405-00

Raymond Chen

A customer was having trouble with job objects,
specifically, the customer found that a

WaitForSingleObject
on a job object was not completing
even though all the processes in

the job had exited.

This is probably the most frustrating part of job objects:
A job object does not become

signaled when all processes
have exited.

The state of a job object is set to signaled when all of its processes
are terminated
because the
specified end-of-job time limit has been exceeded.
Use WaitForSingleObject
or
WaitFor-
SingleObjectEx
to monitor the job object for this event.

The job object becomes signaled only if the end-of-job time limit
has been reached.
If the

processes exit without exceeding the time limit,
then the job object remains unsignaled. This

is a historical artifact of the original motivation for
creating job objects,
which was to manage

batch style server applications which
were short-lived and usually ran to completion.
The

original purpose of job objects was to keep those processes
from getting into a runaway state

and consuming excessive resources.
Therefore, the interesting thing from a job object’s point

of view
was whether the process being managed in the job had to be killed
for exceeding its

resource allocation.

Of course, nowadays, most people use job objects just to wait for
a process tree to exit,
not for

keeping a server batch process from going runaway.
The original motivation for job objects

has vanished into the mists
of time.

In order to wait for all processes in a job object to exit,
you need to listen for job completion

port notifications.
Let’s try it:

https://devblogs.microsoft.com/oldnewthing/20130405-00/?p=4743
http://msdn.microsoft.com/library/ms684161(v=vs.85).aspx

2/4

#define UNICODE

#define _UNICODE

#define STRICT

#include <windows.h>

#include <stdio.h>

#include <atlbase.h>

#include <atlalloc.h>

#include <shlwapi.h>

int __cdecl wmain(int argc, PWSTR argv[])

{

CHandle Job(CreateJobObject(nullptr, nullptr));

if (!Job) {

 wprintf(L”CreateJobObject, error %d\n”, GetLastError());

 return 0;

}

CHandle IOPort(CreateIoCompletionPort(INVALID_HANDLE_VALUE,

 nullptr, 0, 1));

if (!IOPort) {

 wprintf(L”CreateIoCompletionPort, error %d\n”,

 GetLastError());

 return 0;

}

JOBOBJECT_ASSOCIATE_COMPLETION_PORT Port;

Port.CompletionKey = Job;

Port.CompletionPort = IOPort;

if (!SetInformationJobObject(Job,

 JobObjectAssociateCompletionPortInformation,

 &Port, sizeof(Port))) {

 wprintf(L”SetInformation, error %d\n”, GetLastError());

 return 0;

}

PROCESS_INFORMATION ProcessInformation;

STARTUPINFO StartupInfo = { sizeof(StartupInfo) };

PWSTR CommandLine = PathGetArgs(GetCommandLine());

if (!CreateProcess(nullptr, CommandLine, nullptr, nullptr,

 FALSE, CREATE_SUSPENDED, nullptr, nullptr,

 &StartupInfo, &ProcessInformation)) {

 wprintf(L”CreateProcess, error %d\n”, GetLastError());

 return 0;

}

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/08/15/10195600.aspx

3/4

if (!AssignProcessToJobObject(Job,

 ProcessInformation.hProcess)) {

 wprintf(L”Assign, error %d\n”, GetLastError());

 return 0;

}

ResumeThread(ProcessInformation.hThread);

CloseHandle(ProcessInformation.hThread);

CloseHandle(ProcessInformation.hProcess);

DWORD CompletionCode;

ULONG_PTR CompletionKey;

LPOVERLAPPED Overlapped;

while (GetQueuedCompletionStatus(IOPort, &CompletionCode,

 &CompletionKey, &Overlapped, INFINITE) &&

 !((HANDLE)CompletionKey == Job &&

 CompletionCode == JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO)) {

 wprintf(L”Still waiting…\n”);

}

wprintf(L”All done\n”);

return 0;

}

The first few steps are to
create a job object, then associate it with
a completion port.
We set

the completion key to be the job itself,
just in case some other I/O gets queued to our port

that
we aren’t expecting.
(Not sure how that could happen, but we’ll watch out for it.)

Next, we launch the desired process into the job.
It’s important that we create it suspended so

that we can
put it into the job before it exits or does something else
that would mess up our

bookkeeping.
After it is safely assigned to the job, we can resume
the process’s main thread,

at which point we have no use for the thread and process handles.

Finally, we go into a loop pulling events from the I/O
completion port.
If the event is not “this

job has no more active processes”,
then we just keep waiting.

Officially, the last parameter to
 GetQueuedCompletionStatus
is
 lpNumberOfBytes ,
but

the job notifications are posted via
 PostQueuedCompletionStatus ,
and
the parameters to

PostQueuedCompletionStatus
can mean anything you want.
In particular,
when the job

object posts notifications, it
puts the notification
code in the “number of bytes” field.

http://blogs.msdn.com/b/oldnewthing/archive/2007/05/25/2854506.aspx
http://msdn.microsoft.com/library/ms684141(v=vs.85).aspx

4/4

Run this program with, say, cmd on the command line.
From the nested cmd prompt,
type

start notepad .
Then type exit to exit the nested command prompt.
Observe that our

program is still waiting,
because it’s waiting for Notepad to exit.
When you exit Notepad,
our

program finally prints “All done”.

Exercise:
The statement “Not sure how that could happen” is a lie.
Name a case where a

spurious notification could arrive,
and how the code can protect against it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

