
1/4

March 29, 2013

How do I convert a method name to a method index for
the purpose of INTERFACEINFO?

devblogs.microsoft.com/oldnewthing/20130329-00

Raymond Chen

The
 IMessageFilter::HandleIncomingCall
method describes the incoming call by

means of an
 INTERFACEINFO structure:

typedef struct tagINTERFACEINFO {

 LPUNKNOWN pUnk;

 IID iid;

 WORD wMethod;

} INTERFACEINFO, *LPINTERFACEINFO;

The wMethod is a zero-based index of the method
within the interface.
For example,

IUnknown::QueryInterface
has index zero,
 IUnknown::AddRef
has index one,
and

IUnknown::Release
has index two.

If you want to filter on a method in an interface,
you need to know its index.
One way of

doing this would be to sit and count the methods,
but this is error-prone,
especially if the

interface is still under active
development and is not yet set in stone.

C to the rescue.

The IDL compiler spits out a C-compatible structure for the
virtual function table,
and you

can use that structure to derive the method indices.
For example:

https://devblogs.microsoft.com/oldnewthing/20130329-00/?p=4813

2/4

#if defined(__cplusplus) && !defined(CINTERFACE)

 …

#else /* C style interface */

 typedef struct IPersistStreamVtbl

 {

 BEGIN_INTERFACE

 HRESULT (STDMETHODCALLTYPE *QueryInterface)(

 __RPC__in IPersistStream * This,

 /* [in] */ __RPC__in REFIID riid,

 /* [annotation][iid_is][out] */

 _COM_Outptr_ void **ppvObject);

 ULONG (STDMETHODCALLTYPE *AddRef)(

 __RPC__in IPersistStream * This);

 ULONG (STDMETHODCALLTYPE *Release)(

 __RPC__in IPersistStream * This);

 HRESULT (STDMETHODCALLTYPE *GetClassID)(

 __RPC__in IPersistStream * This,

 /* [out] */ __RPC__out CLSID *pClassID);

 HRESULT (STDMETHODCALLTYPE *IsDirty)(

 __RPC__in IPersistStream * This);

 HRESULT (STDMETHODCALLTYPE *Load)(

 __RPC__in IPersistStream * This,

 /* [unique][in] */ __RPC__in_opt IStream *pStm);

 HRESULT (STDMETHODCALLTYPE *Save)(

 __RPC__in IPersistStream * This,

 /* [unique][in] */ __RPC__in_opt IStream *pStm,

 /* [in] */ BOOL fClearDirty);

 HRESULT (STDMETHODCALLTYPE *GetSizeMax)(

 __RPC__in IPersistStream * This,

 /* [out] */ __RPC__out ULARGE_INTEGER *pcbSize);

 END_INTERFACE

 } IPersistStreamVtbl;

 …

#endif /* C style interface */

3/4

(You get roughly the same thing if you
use the
DECLARE_INTERFACE macros.)

After we remove the distractions, the structure is just

 typedef struct IPersistStreamVtbl

 {

 BEGIN_INTERFACE

 HRESULT (*QueryInterface)(…);

 ULONG (*AddRef)(…);

 ULONG (*Release)(…);

 HRESULT (*GetClassID)(…);

 HRESULT (*IsDirty)(…);

 HRESULT (*Load)(…);

 HRESULT (*Save)(…);

 HRESULT (*GetSizeMax)(…);

 END_INTERFACE

 } IPersistStreamVtbl;

From this, we can write a macro which extracts the method index:

// If your compiler supports offsetof, then you can use that

// instead of FIELD_OFFSET.

#define METHOD_OFFSET(itf, method) FIELD_OFFSET(itf##Vtbl, method)

#define METHOD_INDEX(itf, method) \

 ((METHOD_OFFSET(itf, method) – \

 METHOD_OFFSET(itf, QueryInterface)) / sizeof(FARPROC))

The macro works by looking at the position of the method in the
vtable and calculating its

index relative to
 QueryInterface ,
which we know has index zero
for all IUnknown -

derived COM interfaces.

These macros assume
that the size of a pointer-to-function
is the same regardless of the

prototype,
but this assumption is safe to make because it is required by the COM ABI.

Observe that in order to get the C-style interfaces,
you must define the CINTERFACE macro

before
including the header file.
(And observe that the C-style interfaces are not available
in

C++;
you must do this in C.)

If the bulk of your program is in C++,
you can slip in a single C file to extract the method

indices
and expose them to the C++ side either through global variables
or short functions.

Depending on how fancy your link-time code generator is,
the global variable or function call

might even become eliminated.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/10/05/238050.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

