
1/4

March 25, 2013

Using accessibility to monitor windows as they come and
go

devblogs.microsoft.com/oldnewthing/20130325-00

Raymond Chen

Today’s Little Program monitors windows as they come and go.
When people contemplate

doing this,
they come up with ideas like installing a
 WH_CBT hook
or a
 WH_SHELL hook,
but

one of the major problems with those types of hooks
is that they are injected hooks.
Injection

is bad for a number of reasons.

It forces the hook to be in a DLL so it can be injected.

Hook activities need to be marshaled back to the main program.

Your DLL will capture events only in processes of the same bitness,
because
you cannot

load a 32-bit DLL into a 64-bit process or vice versa.

You can inject into an elevated process only if your process
is also elevated.
If your

process is non-elevated, then you will not capture
events for windows belonging to

elevated processes.

This is where accessibility comes in handy,
because accessibility lets you specify whether you

want your
hook to be an injected or non-injected one.
And if you’re non-injected, then the

programming model is much simpler
because everything happens in your process
(indeed,

on a single thread).

Take
the scratch program
and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20130325-00/?p=4863
http://blogs.msdn.com/b/oldnewthing/archive/2008/10/20/9006720.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

2/4

#include <strsafe.h>

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

g_hwndChild = CreateWindow(TEXT(“listbox”), NULL,

 LBS_HASSTRINGS | WS_CHILD | WS_VISIBLE | WS_VSCROLL,

 0, 0, 0, 0, hwnd, NULL, g_hinst, 0);

if (!g_hwndChild) return FALSE;

return TRUE;

}

void CALLBACK WinEventProc(

 HWINEVENTHOOK hWinEventHook,

 DWORD event,

 HWND hwnd,

 LONG idObject,

 LONG idChild,

 DWORD dwEventThread,

 DWORD dwmsEventTime

)

{

if (hwnd &&

 idObject == OBJID_WINDOW &&

 idChild == CHILDID_SELF)

{
 PCTSTR pszAction = NULL;

 TCHAR szBuf[80];

 switch (event) {

 case EVENT_OBJECT_CREATE:

 pszAction = TEXT(“created”);

 break;

 case EVENT_OBJECT_DESTROY:

 pszAction = TEXT(“destroyed”);

 break;

 }

 if (pszAction) {

 TCHAR szClass[80];

 TCHAR szName[80];

 szClass[0] = TEXT(‘\0’);

 szName[0] = TEXT(‘\0’);

 if (IsWindow(hwnd)) {

 GetClassName(hwnd, szClass, ARRAYSIZE(szClass));

 GetWindowText(hwnd, szName, ARRAYSIZE(szName));

 }

 TCHAR szBuf[80];

 StringCchPrintf(szBuf, ARRAYSIZE(szBuf),

 TEXT(“%p %s \”%s\” (%s)”), hwnd, pszAction,

 szName, szClass);

 ListBox_AddString(g_hwndChild, szBuf);

3/4

 }

}
}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

…
 ShowWindow(hwnd, nShowCmd);

HWINEVENTHOOK hWinEventHook = SetWinEventHook(

 EVENT_OBJECT_CREATE, EVENT_OBJECT_DESTROY,

 NULL, WinEventProc, 0, 0,

 WINEVENT_OUTOFCONTEXT | WINEVENT_SKIPOWNPROCESS);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 if (hWinEventHook) UnhookWinEvent(hWinEventHook);

…

}

This is a generalization of our earlier program which
waits for a specific window to be

destroyed,
except that we now are watching all windows
for creation and destruction.

When you run this program, you see that there is a lot of
window activity,
but maybe you are

interested only in windows when they are shown
and hidden.
No problem, that’s a small

change:

 switch (event) {

 case EVENT_OBJECT_SHOW:

 pszAction = TEXT(“shown”);

 break;

 case EVENT_OBJECT_HIDE:

 pszAction = TEXT(“hidden”);

 break;

 }

…

HWINEVENTHOOK hWinEventHook = SetWinEventHook(

 EVENT_OBJECT_SHOW, EVENT_OBJECT_HIDE,

 NULL, WinEventProc, 0, 0,

 WINEVENT_OUTOFCONTEXT | WINEVENT_SKIPOWNPROCESS);

http://blogs.msdn.com/b/oldnewthing/archive/2011/10/26/10230020.aspx

4/4

Notice that these notifications are received for windows
from both 32-bit and 64-bit

processes,
and that they are received even for windows belonging
to elevated processes.
You

can’t do that with an injected hook.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

