
1/2

March 22, 2013

When will GetMessage return -1?
devblogs.microsoft.com/oldnewthing/20130322-00

Raymond Chen

A source of great consternation is the mysterious -1 return value from GetMessage:

If there is an error, the return value is −1. For example, the function fails if hWnd is an invalid
window handle or lpMsg is an invalid pointer.

That paragraph has caused all sorts of havoc, because it throws into disarray the standard

message pump:

MSG msg;

while (GetMessage(&msg, NULL, 0, 0)) {

...

}

But don’t worry, the standard message pump is safe. If your parameters are exactly

a valid pointer to a valid MSG structure,

a null window handle,

no starting message range filter,

no ending message range filter,

then GetMessage will not fail with -1 .

Originally, the GetMessage function did not have a failure mode. If you passed invalid

parameters, then you invoked undefined behavior, and you probably crashed.

Later, somebody said, “Oh, no, the GetMessage function needs to detect invalid parameters

and instead of crashing, it needs to fail gracefully with some sort of error code.” (This was

before “Fail-Fast” came into fashion.)

The problem is that GetMessage ‘s return value of BOOL was already specified not as a

success/failure code, but rather a “Has a WM_QUIT message been received?” code. So return

FALSE wouldn’t work.

The solution (if that’s what you want to call it) was to have GetMessage return the not-

really-a- BOOL -but-we’ll-pretend-it-is value -1 to signal an invalid parameter error.

https://devblogs.microsoft.com/oldnewthing/20130322-00/?p=4873
http://msdn.microsoft.com/library/ms644936(v=vs.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/12/10/9934911.aspx

2/2

And that’s what threw everybody into a tizzy, because now every message loop looks buggy.

But you can calm down. The standard message loop is fine. All the parameters are hard-

coded (and therefore valid by inspection), save for the &msg parameter, which is still valid

by inspection. So that case is okay. It has to be, for compatibility.

The people who need to worry are people who pass a variable as the window handle filter

(because that window handle may no longer be valid), or pass dynamically-allocated memory

as the lpMsg (because the pointer may no longer be valid), or who pass a nontrivial

message filter (because the filter parameters may be invalid).

In practice, the memory for the lpMsg is nearly always a stack variable (so the pointer is

valid), and the message range filters are hard-coded (so valid by inspection). The one to

watch out for is the window handle filter. But we saw earlier that a filtered GetMessage is a

bad idea anyway, because your program will not respond to messages that don’t meet the

filter.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2005/02/09/369804.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

