
1/8

March 14, 2013

Playing with the Windows Animation Manager: Fixing a
sample

devblogs.microsoft.com/oldnewthing/20130314-00

Raymond Chen

Windows 7 provides a component known as the
Windows Animation Manager,
known to

some people by its acronym WAM, pronounced “wham”.
There are
some nice sample

programs for WAM on MSDN,
but for some reason, the authors of the samples decided
to

animate the three color components of a resultant color.

Because apparently the authors of those sample programs
can look at a color and say,
“Oh,

clearly the red component of this color increases
gradually at first, then speeds up its rate of

increase,
and then slows back down until it reaches its final value;
while simultaneously the

blue component is doing the opposite,
but over a shorter time span,
and the green

component is remaining fixed.”

Today’s exercise is to fix the sample program so you can actually
see and understand what

WAM is doing,
rather than just watching psychedelic colors change
and saying,
“Gee, that’s

pretty.”

But first, some background:

Windows Animation is a component which manipulates variables.
A variable is a number

which varies over time.
You tell Windows Animation things like
“I would like you to animate

this variable from 1 to 10 over
the next 7 seconds.”
You can then interrogate the variable for

its current value,
and it might say “Right now, the value is 6.”

The idea is that each of these variables is connected to some
visual property, like the position

of an object.
When you paint the object, you consult the current value of the
variable to find

out where you should draw it.

One of the annoying bits about Windows Animation is that you have
to set up a bunch of stuff

just to get things started.
You need an animation manager,
which is the object that runs the

show.
You also need an animation timer
whose job is to tell the animation manager what

https://devblogs.microsoft.com/oldnewthing/20130314-00/?p=4953
http://msdn.microsoft.com/en-us/library/dd371981.aspx
http://archive.msdn.microsoft.com/animationmanager

2/8

time it is.
(Under normal circumstances, you would use the default timer,
which records real-

world time,
but you might want to replace it with
a special timer for debugging that runs at

half-speed,
or maybe one which
varies its speed based on how fast you clap.)

Okay, back to fixing the sample.

Start with the
Timer-Driven Animation
and make these changes:

http://blogs.msdn.com/b/oldnewthing/archive/2009/04/07/9534758.aspx
http://archive.msdn.microsoft.com/animationmanager

3/8

 // disable the initial animation

 // Fade in with Red

 // hr = ChangeColor(COLOR_MAX, COLOR_MIN, COLOR_MIN);

HRESULT CMainWindow::DrawBackground(

 Graphics &graphics,

 const RectF &rectPaint

)

{

 // Get the RGB animation variable values

 INT32 red;

 HRESULT hr = m_pAnimationVariableRed->GetIntegerValue(

 &red

);

 if (SUCCEEDED(hr))

 {

 INT32 green;

 hr = m_pAnimationVariableGreen->GetIntegerValue(

 &green

);

 if (SUCCEEDED(hr))

 {

 INT32 blue;

 hr = m_pAnimationVariableBlue->GetIntegerValue(

 &blue

);

 if (SUCCEEDED(hr))

 {

 // Replace the drawing code as follows

 SolidBrush brushBackground(Color(255, 255, 255));

 hr = HrFromStatus(graphics.FillRectangle(

 &brushBackground,

 rectPaint

));

 SolidBrush brushCircle(Color(0, 0, 0));

 hr = HrFromStatus(graphics.FillEllipse(

 &brushCircle,

 red, green, 10, 10

));

 }

 }

 }

 return hr;

}

4/8

Instead of drawing a psychedelic background color,
I draw a small
circle
using the old red

value
as the x-coordinate, and the old green value
as the y-coordinate.
I didn’t rename the

variables or get rid of the unused
 blue variable
because I wanted to make as few changes as

possible.

Run this program, and click to make the circle move.
Observe that when the circle moves, it

starts slowly,
then accelerates, and then decelerates as it gets closer
to its final location.

What’s more, if you click while the circle is still moving,
the circle demonstrates inertia as it

turns to
head toward its new target location.

I bet you never noticed the acceleration, deceleration, or
inertia
in the original background-

color version.

With a little bit of work, you can make the sample even more
interesting by making the circle

go to where you clicked.
It looks like a lot of work when I spell it out below,
but most of it

consists of deleting code.

First, do a search/replace and rename
 m_pAnimationVariableRed to

m_pAnimationVariableX ,
and rename
 m_pAnimationVariableGreen to

m_pAnimationVariableY .
Delete
 m_pAnimationVariableBlue entirely,
as well as any

references to it.
I decided to just bite the bullet and deal with the
consequences of

renaming/deleting variables.

Now we can simplify the
 CMainWindow::CreateAnimationVariables
method so all it does

is create the two coordinate variables.

HRESULT CMainWindow::CreateAnimationVariables()

{

 HRESULT hr = m_pAnimationManager->CreateAnimationVariable(

 0,

 &m_pAnimationVariableX

);

 if (SUCCEEDED(hr))

 {

 hr = m_pAnimationManager->CreateAnimationVariable(

 0,

 &m_pAnimationVariableY

);

 }

 return hr;

}

We want the circle to move when you click the mouse,
so let’s do that.
Delete CMain‐

Window::OnLButtonDown
and change the window procedure so that clicks move the circle.

http://www.piday.org/

5/8

LRESULT CALLBACK CMainWindow::WndProc(

 HWND hwnd,

 UINT uMsg,

 WPARAM wParam,

 LPARAM lParam

)

{

 …

 case WM_LBUTTONDOWN:

 {

 pMainWindow->ChangePos(

 (SHORT)LOWORD(lParam),

 (SHORT)HIWORD(lParam)

);

 }

 return MESSAGE_PROCESSED;

 …

}

And rename the member function
 ChangeColor to
 ChangePos ,
and instead of taking red

and green,
have it take x and y.

6/8

HRESULT CMainWindow::ChangePos(

 INT x,

 INT y

)

{

 const UI_ANIMATION_SECONDS DURATION = 0.5;

 const DOUBLE ACCELERATION_RATIO = 0.5;

 const DOUBLE DECELERATION_RATIO = 0.5;

 // Create a storyboard

 IUIAnimationStoryboard *pStoryboard = NULL;

 HRESULT hr = m_pAnimationManager->CreateStoryboard(

 &pStoryboard

);

 if (SUCCEEDED(hr))

 {

 // Create transitions for the position animation variables

 IUIAnimationTransition *pTransitionX;

 hr = m_pTransitionLibrary->CreateAccelerateDecelerateTransition(

 DURATION,

 x,

 ACCELERATION_RATIO,

 DECELERATION_RATIO,

 &pTransitionX

);

 if (SUCCEEDED(hr))

 {

 IUIAnimationTransition *pTransitionY;

 hr = m_pTransitionLibrary->CreateAccelerateDecelerateTransition(

 DURATION,

 y,

 ACCELERATION_RATIO,

 DECELERATION_RATIO,

 &pTransitionY

);

 // delete former “blue” transition

 if (SUCCEEDED(hr))

 {

 // Add transitions to the storyboard

 hr = pStoryboard->AddTransition(

 m_pAnimationVariableX,

 pTransitionX

);

 if (SUCCEEDED(hr))

 {

 hr = pStoryboard->AddTransition(

7/8

 m_pAnimationVariableY,

 pTransitionY

);

 // delete former “blue” transition

 if (SUCCEEDED(hr))

 {

 // Get the current time and schedule the storyboard for play

 UI_ANIMATION_SECONDS secondsNow;

 hr = m_pAnimationTimer->GetTime(

 &secondsNow

);

 if (SUCCEEDED(hr))

 {

 hr = pStoryboard->Schedule(

 secondsNow

);

 }

 }

 }

 // delete former “blue” transition

 pTransitionY->Release();

 }

 pTransitionX->Release();

 }

 pStoryboard->Release();

 }

 return hr;

}

Now you can click the mouse on the client area,
and the dot will chase it like a puppy.

The basic idea behind the Windows Animation Library
is that for each property you want to

animate,
you associate an animation variable,
and when you want to perform the animation,

you create a transition for each variable describing
how you want the animation to proceed,

put all the transitions into a storyboard,
and then schedule the storyboard.

Of course, you can build optimizations on top of the basic idea.
For example, you might not

create the animation variable until
the first time you need to animate the property.
Another

optimization is invalidating only the parts of the window
that need repainting,
rather than

8/8

invalidating the entire client area.
You can do this by registering a change handler on your

variables:
When the change handler notifies you that a value changed,
invalidate the old

position and the new position.
This will erase the old location and draw at the new location.

Next time, I’ll build a program that animates a hundred objects,
just for fun.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/03/15/10399700.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

