
1/5

March 13, 2013

Closing holes in the update notification pattern
devblogs.microsoft.com/oldnewthing/20130313-00

Raymond Chen

Suppose you have a function that is registered to be called
the next time something gets

updated,
and suppose that the notification is a one-shot
notification and
needs to be re-

armed each time you want to
wait for the next notification.
(For example, the
RegNotify‐

ChangeKeyValue
function behaves this way.)
Consider the following code fragment:

void onUpdateThing()

{

// get the updated properties of the thing

getThingProperties();

// ask to be called back the next time it updates

registerUpdateCallback(onUpdateThing);

}

mainProgram()

{

// get the thing’s initial properties

// and register for updates

onUpdateThing();

}

There is a race condition here if the thing updates
twice in rapid succession.
On the first

update, your onUpdateThing
function is called.
If the second update occurs
while get‐

ThingProperties is running,
then your call to
 registerUpdateCallback will be too late,

and you will miss the second update.

The solution is to register for the next update before
studying the previous one.

https://devblogs.microsoft.com/oldnewthing/20130313-00/?p=4963
http://msdn.microsoft.com/library/ms724892.aspx

2/5

void onUpdateThing()

{

// ask to be called back the next time it updates

registerUpdateCallback(onUpdateThing);

// get the updated properties of the thing

getThingProperties();

}

That way, if a second update comes in while you’re studying
the first one,
your update

callback will be called because you already
registered it.
(I’m assuming you’re only interested

in the last update.)

Of course, this assumes that update requests are queued
if the receiving thread is busy.
If

updates can be received during the execution of
 getThingProperties ,
then you will end

up in a bad re-entrant situation:
During the processing of one update,
you start processing a

new update.
Then when the nested update finishes,
you return to the original update,
which

is now actually performing the second half
of the second update.

Suppose your update code wants to keep the colors
of two additional objects in sync with the

color
of the thing:

void getThingProperties()

{

Color currentThingColor = getThingColor();

object1.setColor(currentThingColor);

object2.setColor(currentThingColor);

}

If the setColor method
creates a re-entrancy window, you can have this problem:

Thing changes color to red.

onUpdateThing begins.

Register update callback.

getThingProperties reads
current color as red.

3/5

getThingProperties
sets object 1’s color to red.
The setColor method
creates an

opportunity for re-entrancy
by some means.
(For example, it may send a message to

another thread,
causing inbound sent messages to be processed.)

Thing changes color to blue.

onUpdateThing begins.

Register update callback.

getThingProperties reads
current color as blue.

getThingProperties
sets object 1’s color to blue.

getThingProperties
sets object 2’s color to blue.

getThingProperties returns.

onUpdateThing returns.

getThingProperties
sets object 2’s color to red. (Oops.)

getThingProperties returns.

onUpdateThing returns.

One solution is to use a
sequence number (also known as a
change counter)
that gets

incremented each time the thing changes.
If there is only one thread which updates the thing,

you can try to update it atomically.
For example, if the information is in the registry,
you can

put all the information into a single registry value
or use registry transactions.

If you can associate a change counter with the data,
then you can use the following algorithm:

http://msdn.microsoft.com/library/ms649042.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/12/10152296.aspx

4/5

// start with a known invalid value

// (If you have multiple listeners, then this naturally

// needs to be instance data rather than global.)

LONG lLastChange = 0;

void onUpdateThing()

{

bool finished = false;

do {

 // record the most recent change we’ve processed

 lLastChange = getThingChangeCount();

 getThingProperties();

 // ask to be called back the next time it updates

 registerUpdateCallback(onUpdateThing);

 // did it change while we were busy?

 LONG lNewChange = getThingChangeCount();

 finished = lLastChange == lNewChange;

 if (!finished) {

 // cancel the update callback because we don’t

 // want to be re-entered

 unregisterUpdateCallback(onUpdateThing);

 }

} while (!finished);

}

Another solution would be to detect the re-entrancy and just
remember that there is more

work to be done after
the previous update finishes.

5/5

// 0 = not busy

// 1 = busy

// 2 = busy, and a change occurred while we were busy

// (If you have multiple listeners, then this naturally

// needs to be instance data rather than global.)

int iBusy = 0;

void onUpdateThing()

{

// ask to be called back the next time it updates

registerUpdateCallback(onUpdateThing);

if (iBusy) {

 iBusy = 2;

} else {

 iBusy = 1;

 do {

 getThingProperties();

 } while (–iBusy);

}
}

Note that all of the above examples assume that the
 onUpdateThing function
has thread

affinity.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

