
1/5

March 11, 2013

How can I see what files and shares are being accessed
remotely, and the general usage pattern for the NetXxx
functions

devblogs.microsoft.com/oldnewthing/20130311-00

Raymond Chen

Today’s Little Program is a command line version of the
Shared Folders MMC snap-in.
Why?

Because it illustrates the usage pattern for the NetXxx
family of functions.
(It’s also a clone

of the networking portion of the
openfiles tool.)

The NetXxx family of functions generally work like this:

You pass in some parameters that describe what you want.
Server name, that sort of

thing.

You pass a “level” parameter that describes
what information you want.

The function allocates memory to hold the results you requested,
and
it returns a

pointer to that memory
through a bufptr parameter.

If the function returns an array, then

You can tell the function the maximum number of results you want.

The function tells you how much information it returned.

If the function did not retrieve all the results (because it
exceeded your

maximum), it tells you how to get the rest of them.

When you are finished, you free the memory
with NetApiBufferFree .

We’ll start with the non-array case,
since that is much simpler.
Suppose you want to get the

level 123 information for a Thing.

THING_INFO_123 *pinfo123;

if (NetThingGetInfo(pszThing,

 123, (LPBYTE*)&pinfo123) == NERR_Success)

{

 DoSomethingWith(pinfo123);

 NetApiBufferFree(pinfo123);

}

https://devblogs.microsoft.com/oldnewthing/20130311-00/?p=5003
http://technet.microsoft.com/en-us/library/cc732490
http://msdn.microsoft.com/library/aa370676.aspx

2/5

You call the function, passing the desired information level
and a pointer to the variable you

want to receive the results.
You then use the results, and then free them.
Let’s try it with a

simple function to get information about a user.

#define UNICODE

#define _UNICODE

#define STRICT

#include <windows.h>

#include <lm.h>

#include <stdio.h>

void PrintProperty(PCWSTR pszProperty, PCWSTR pszValue)

{

wprintf(L”%ls: %ls\n”, pszProperty,

 pszValue ? pszValue : L”<none>”);

}

int __cdecl wmain(int argc, wchar_t **argv)

{

USER_INFO_10 *pinfo10;

if (NetUserGetInfo(NULL, L”Administrator”, 10,

 (LPBYTE*)&pinfo10) == NERR_Success) {

 PrintProperty(L”Name”, pinfo10->usri10_name);

 PrintProperty(L”Comment”, pinfo10->usri10_comment);

 PrintProperty(L”User comment”, pinfo10->usri10_usr_comment);

 PrintProperty(L”Full name”, pinfo10->usri10_full_name);

 NetApiBufferFree(pinfo10);

}
return 0;

}

The trickier case is the functions that return arrays of data.
In that case, you need to call the

functions in a loop,
similar to FindNextFile ,
in order to read all the data.
But unlike

FindNextFile ,
the functions return chunks of data rather than just one
entry at a time.

The general pattern goes like this:

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx

3/5

THING_INFO_123 *pinfo123;

NET_API_STATUS status;

DWORD_PTR resumeHandle = 0;

do {

DWORD actual, estimatedTotal;

status = NetThingEnum(pszThing, 123,

 (LPBYTE*)&pinfo123,

 MAX_PREFERRED_LENGTH,

 &actual,

 &estimatedTotal,

 &resumeHandle);

if (status == NERR_Success ||

 status == ERROR_MORE_DATA) {

 for (DWORD i = 0; i < actual; i++) {

 DoSomethingWith(&pinfo123[i]);

 }

 NetApiBufferFree(pinfo123);

}
} while (status == ERROR_MORE_DATA);

The general pattern is to start by calling the
data retrieval function.
If the function returns

with
 NERR_Success ,
then it means that it was able to get all the information
you requested.

If the function returns with
 ERROR_MORE_DATA ,
then it means that it was able to get some of

the information
you requested.
In either of those two cases, it returns the actual number
of

items retrieved in the actual parameter,
which you use to read the values out of the

results.
(It also returns
an estimate of the total number of items remaining in the

estimatedTotal variable,
but very few people use that.)

If the return value was
 ERROR_MORE_DATA ,
then you go back and call the function again to

get the next
batch of results.

The way the functions can tell whether you’re starting a new
operation or continuing an old

one is via the
 resumeHandle parameter,
which must be a pointer to a DWORD_PTR variable

which the function updates.
On the first call, set the DWORD_PTR to zero.
If the function

returns partial results, then it puts an opaque
value into the resumeHandle so it can

remember
where it needs to continue.
(By comparison,
the FindFirstFile passes the

resume handle as its return value.)

Note that there is no equivalent to
 FindClose when you are finished with
the function.
If

you don’t want to retrieve all the results,
you just abandon the handle.

4/5

int __cdecl wmain(int argc, wchar_t **argv)

{

FILE_INFO_3 *pinfo3;

NET_API_STATUS status;

DWORD_PTR resumeHandle = 0;

do {

 DWORD actual, estimatedTotal;

 status = NetFileEnum(NULL, NULL, NULL, 3,

 (LPBYTE*)&pinfo3,

 MAX_PREFERRED_LENGTH,

 &actual,

 &estimatedTotal,

 &resumeHandle);

 if (status == NERR_Success ||

 status == ERROR_MORE_DATA) {

 for (DWORD i = 0; i < actual; i++) {

 PrintProperty(L”Path”, pinfo3[i].fi3_pathname);

 PrintProperty(L”User”, pinfo3[i].fi3_username);

 if (pinfo3[i].fi3_permissions & PERM_FILE_READ) {

 PrintProperty(L”Access”, L”READ”);

 }

 if (pinfo3[i].fi3_permissions & PERM_FILE_WRITE) {

 PrintProperty(L”Access”, L”WRITE”);

 }

 if (pinfo3[i].fi3_permissions & PERM_FILE_CREATE) {

 PrintProperty(L”Access”, L”CREATE”);

 }

 }

 NetApiBufferFree(pinfo3);

 }

} while (status == ERROR_MORE_DATA);

return 0;

}

I’ve been ignoring the parameter known as
 prefmaxlen
because you pretty much
always

pass MAX_PREFERRED_LENGTH .
The parameter lets you limit how much information is

returned
at a time,
but you nearly always want
as much as possible
(which is why you nearly

always
pass MAX_PREFERRED_LENGTH).
If, for some reason,
you want to retrieve only a little

bit at a time,
you can pass a smaller value as the
 prefmaxlen .
Note that
 prefmaxlen is in

bytes, not elements,
and the size in bytes needs to include the auxiliary data
(like the strings),

not just the structures.
If you pass a custom
 prefmaxlen ,
then you also have to be prepared

to handle the
 NERR_BufTooSmall error code,
which means
“The value you passed in

prefmaxlen
wasn’t big enough to hold even one item.
You’ll have to try again with a bigger

buffer size.”
If you’re advanced enough to use a custom buffer size,
then you’re advanced

enough to figure out how to tweak
the algorithm to handle it properly.

Note that I have no special knowledge of the NetXxxx
family of functions.
I figured this out

by reading the documentation.

http://blogs.msdn.com/b/oldnewthing/archive/2006/04/06/569873.aspx

5/5

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

