
1/2

March 7, 2013

What are the conventions for managing standard
handles?

devblogs.microsoft.com/oldnewthing/20130307-00

Raymond Chen

Consider this function:

void ChangeConsoleColor(WORD wColor)

{

HANDLE h = GetStdHandle(STD_OUTPUT_HANDLE);

if (h != INVALID_HANDLE_VALUE) {

 SetConsoleTextAttribute(h, wColor);

 CloseHandle(h);

}
}

“When I call this function, it works the first time,
but when I call it a second time,
 GetStd‐

Handle returns a handle
numerically identical to the one returned by the first call,
but the

handle is now invalid,
presumably because I closed it.
I closed it because I was taught to

clean up after myself.
Is this a case where I shouldn’t?”

Yes, you should clean up after yourself,
but you should also have been taught to
be respectful

of community property.
In this case, you walked into the TV room of your dormitory,

watched an episode of Friends,
and then smashed the television with a baseball bat.
Later,

you came back to the room to watch another episode of Friends
and said,
“Hey, what

happened to our television?”
(You can tell I’m old because I’m talking about the TV room
of a

dormitory.)

The standard handle values are sort of like a global variable
for your process.
Anybody can

call
 GetStdHandle to read the variable,
and anybody can call
 SetStdHandle to set it.
But

as with any other global handle variable,
you need to observe certain rules to ensure that the

value is always valid.

Suppose you had a global variable called
 HANDLE hSomeFile .
What invariants would you

want to apply?

https://devblogs.microsoft.com/oldnewthing/20130307-00/?p=5033

2/2

If the value is
 INVALID_HANDLE_VALUE ,
then there is no active file.
(You might also

have decided to use
 NULL as your special value,
but INVALID_HANDLE_VALUE works

better here
because that is the conventional sentinel value for file handles.)

If the value is not the special value above, then it refers
to a valid file handle.

That second invariant above already establishes a rule:

If you close the handle held in the global variable,
you must also set the global variable

to a new valid value.

As I noted some time ago,
programming is a game of stepping-stone from one island of

consistency
to another.
You start with a consistent system,
you perturb it (temporarily

violating consistency),
and then you re-establish consistency.
Closing the handle makes the

value invalid,
so you need to follow up by making the value valid again.
Otherwise you left

your system in an inconsistent state.

Okay, now instead of talking about that global variable
 hSomeFile ,
let’s talk about the

global handle hidden behind
 GetStdHandle and
 SetStdHandle .
Congratulations, we just

established the rules for managing standard handles.

If GetStdHandle returns
 INVALID_HANDLE_VALUE ,
then there is no active file.

If the value is not the special value above, then it refers
to a valid file handle.
(Note that

file handles can refer to things that aren’t
files. In our case, it often will refer to a

console.)

If you call CloseHandle on a standard
handle, then you must also call
 SetStd‐

Handle to set a new value
for the standard handle.

Note that these rules are just conventions.
If you want to violate them by, say, closing the

handle
and then leaving a garbage handle in the hidden global variable
for the next guy to

trip over,
then that’s your problem.
For example, you might choose to violate the rules

temporarily,
and then fix things up before anybody notices.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/03/02/82639.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/11/13/9921676.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

