
1/2

March 6, 2013

What are the dire consequences of not selecting objects
out of my DC?

devblogs.microsoft.com/oldnewthing/20130306-00

Raymond Chen

The convention when working with device contexts is to restore them to the way you found

them. If a drawing function selects a bitmap into a device context, then it should select the

original bitmap into the device context before returning. Same for fonts, pens, all that stuff.

But what if you decide to violate that convention? For example, maybe you create a memory

DC, select a bitmap into it, and just leave the bitmap selected there, selecting it out only when

you get around to destroying the DC. Is that really so bad?

It sort of depends.

The danger of leaving objects selected into a DC for an extended period of time is that the

owner of the object won’t be able to destroy the object, because you can’t destroy objects

while they are selected into a DC. For example, if you select a font into a DC, and somebody

tries to destroy the font, the DeleteObject call will fail, and you end up leaking a font.

Bitmaps can be selected into only one DC at a time. If you select the bitmap into your DC and

just forget about it, then the owner of that bitmap won’t be able to select it into any other DC.

Now, if the objects you are selecting into the DC are all under your control, then you can

leave them selected into your private DC, because you will know how to get them out if you

need to.

Remember that this “leave it lying around, I’ll clean it up later” technique requires you to

control both the vertical and the horizontal. We’ve been discussing what happens if you select

an object that somebody else controls into your private DC and leave it there. Conversely, if

you have a bitmap that you control and leave it selected into a DC that you don’t control, then

you’ve got the same sort of problem in reverse: You won’t be able to select the bitmap back

out of that DC when you need to, because you lost control of the DC.

Bonus chatter: “I’ve noticed that sometimes, DeleteObject claims to succeed even

though it actually failed because the object is still selected in a DC.” The GDI folks found that

a lot of people mess up and try to destroy objects while they are still selected into DCs.

https://devblogs.microsoft.com/oldnewthing/20130306-00/?p=5043

2/2

Failing the call caused two categories of problems: Some applications simply leaked

resources (since they thought they were destroying the object, but weren’t). Other

applications checked the return value and freaked out if they saw that DeleteObject didn’t

actually delete the object.

To keep both of these types of applications happy, GDI will sometimes (not always) lie and

say, “Sure, I deleted your object.” It didn’t actually delete it, because it’s still selected into a

DC, but it also ties a string around its finger, and when the object is finally deselected, GDI

will say, “Oh, wait, I was supposed to delete this object,” and perform the deletion. So the lie

that GDI made wasn’t so much a lie as it was an “optimistic prediction of the future.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

