
1/2

February 20, 2013

You can ask the compiler to answer your calling
convention questions

devblogs.microsoft.com/oldnewthing/20130220-00

Raymond Chen

If you want to figure out some quirks of a calling
convention,
you can always ask the compiler

to do it for you,
on the not unreasonable assumption that the compiler
understands calling

conventions.

“When a __stdcall
function returns a large structure by value,
there is a hidden first

parameter that specifies the
address the return value should be stored.
But if the function is a

C++ instance method,
then there is also a hidden this
parameter.
Which goes first, the

return value parameter
or the this pointer?”

This is another case of
You don’t need to ask me a question the compiler can answer more

accurately.

struct LargeStructure

{

char x[256];

};

class Something

{

public:

LargeStructure __stdcall TestMe();

};

void foo(Something *something)

{

LargeStructure x = something->TestMe();

}

You could compile this into a program and
then look in the debugger,
or just ask the compiler

to generate an assembly
listing.
I prefer the assembly listing, since it saves a few
steps,
and

the compiler provides helpful symbolic names.

https://devblogs.microsoft.com/oldnewthing/20130220-00/?p=5193
http://blogs.msdn.com/b/oldnewthing/archive/2011/07/27/10190102.aspx

2/2

 00015 mov eax, DWORD PTR _something$[ebp]

; LargeStructure x = something->TestMe();

 00018 lea ecx, DWORD PTR _x$[ebp]

 0001e push ecx

 0001f push eax

 00020 call ?TestMe@Something@@

 QAG?AULargeStructure@@XZ

 ; Something::TestMe

We see that the last thing pushed onto the stack
(and therefore the top parameter on the

stack
at the point of the call)
is the something parameter,
which is the this
for the

function.

Conclusion:
The this pointer goes ahead of the
output structure pointer.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

