
1/2

February 14, 2013

If you can’t find the function, find the caller and see what
the caller jumps to

devblogs.microsoft.com/oldnewthing/20130214-00

Raymond Chen

You’re debugging a program and
you want to set a breakpoint on some function,
say,

netapi32!DsAddressToSiteNameW ,
but when you execute the
 bp netapi32!DsAddress‐

ToSiteNameW command in the debugger,
the debugger says that there is no such function.

The
Advanced Windows Debugging book
says that the bp command should set a breakpoint
on the function,
but the debugger says that the symbol cannot be found.
I used the x
netapi32!* command to see that
the debugger did find a whole bunch of symbols,
and it
says that the symbols were loaded
(from the
public symbol store),
but
 netapi32!Ds‐
AddressToSiteNameW
isn’t among them.
The MSDN documentation says that DsAddress‐
ToSiteNameW is
in the netapi32.dll ,
but it’s not there!
I can’t believe you guys stripped
that function out
of the symbol file,
since it’s a function that people will
want to set a breakpoint
on.

Okay, first let’s
rule out the conspiracy theory.
The symbols were not stripped from the public

symbols.
And even if they were,
that shouldn’t stop you, because after all,
the loader has to be

able to find the function
when it loads your program,
so it’s gotta be obtainable even without

symbols.

Don’t be helpless.
You already have the tools to figure out where the function is.

Just write a program that calls the function,
then load it into the debugger and see what the

destination of the call instruction is.
You don’t even have to pass valid parameters to the

function call,
since you’re never actually executing the code;
you’re just looking at it.

And hey looky-here,
you already have a program that calls the function:
The program you’re

trying to debug!
So let’s see where it goes.

https://devblogs.microsoft.com/oldnewthing/20130214-00/?p=5243
http://blogs.msdn.com/b/oldnewthing/archive/2007/12/18/6794821.aspx
http://support.microsoft.com/kb/311503
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx

2/2

0:001>u contoso!AwesomeFunction

…

00407352 call [contoso!__imp__DsAddressToSiteNameW (0040f104)]

…

0:001>u poi 0040f104

logoncli!DsAddressToSiteNameW:

7f014710 push ebp

7f014711 mov esp, ebp

…

There you go.
The code for the function is in logoncli.dll .

What happened?
How did you end up in logoncli.dll ?

What you saw was the effect of a
DLL forwarder.
The code for the function
 DsAddressTo‐

SiteNameW doesn’t live in
 netapi32.dll .
Instead,
 netapi32.dll has an export table

entry that says
“If anybody comes to me asking for DsAddressToSiteNameW ,
send them to

logoncli!DsAddressToSiteNameW instead.”

Officially, the function is in netapi32.dll
for linkage purposes,
but internally the function

has been forwarded to another DLL
for implementation.
It’s like a telephone call-forwarding

service for DLL functions,
except that instead of forwarding telephone calls,
it forwards

function calls.
You publish a phone number in all your marketing materials,
and behind the

scenes, you set up the number to forward
to the phone of the person responsible for sales.

That way,
if that person quits,
or the responsibility for selling the product changes,
you can

just update the call-forwarding table,
and all the calls get routed to the new person.

That’s what happenned here.
The MSDN phone book lists the function as being in

netapi32.dll ,
and whenever a call comes in,
it gets forwarded to wherever the

implementation happens to be.
And the implementation has moved around over time,
so you

should continue calling
 netapi32!DsAddressToSiteNameW
and let the call-forwarding do

the work of getting you to
the implementation.

Don’t start calling logoncli directly,
thinking that you’re cutting out the middle man,
or in

a future version of Windows,
your program may start failing with a
“This number is no longer

in service” error,
like calling the direct office number for
the previous sales representative,

only to find that he left the company last month.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2006/07/19/671238.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

