
1/3

February 1, 2013

Psychic debugging: Why your
IContextMenu::InvokeCommand doesn’t get called even
though you returned success from
IContextMenu::QueryContextMenu

devblogs.microsoft.com/oldnewthing/20130201-00

Raymond Chen

A customer was having trouble with their
 IContextMenu implementation.
They observed

that their
 IContextMenu::QueryContextMenu method
was being called,
but when the user

selected their menu item,
 IContextMenu::InvokeCommand was
not being called.

Given what you know about shell context menus,
you can already direct the investigation.
I’ll

let you
read up about it first,
especially the part about composition,
then we can see how

much you’ve learned.

Welcome back.
(Okay, I know you didn’t actually do the reading,
but I’m welcoming you back

anyway.)

Your first theory as to why
 IContextMenu::InvokeCommand is
not being called is probably

that they returned S_OK from
 IContextMenu::QueryContextMenu instead
of

MAKE_HRESULT(SEVERITY_SUCCESS,
FACILITY_NULL, 1) .
That would explain the

problem, because a return value of
 S_OK
is equivalent to

MAKE_HRESULT(SEVERITY_SUCCESS,
FACILITY_NULL, 0) ,
which means
“I successfully

added up to zero menu items starting at
 idCmdFirst .”
When the user picks the menu item

they added,
the dispatcher will go looking for the corresponding
composite menu

component,
and since they said that they used zero entries,
they will naturally never be

called,
since they disavowed any responsibility for those items.

“Nope, that’s not it.
We’re returning
 MAKE_HRESULT(SEVERITY_SUCCESS,
FACILITY_NULL,

1) .
Any other guesses?”

Oh great, the customer is now playing Twenty Questions.

“I’m going to pose a puzzle with almost no clues,
and you get to propose solutions,
and I’ll say

whether or not you’re right.”

https://devblogs.microsoft.com/oldnewthing/20130201-00/?p=5383
http://blogs.msdn.com/b/oldnewthing/archive/2004/09/20/231739.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/10/07/239197.aspx

2/3

I don’t know why customers play this game.
Maybe they don’t realize that asking for help via

email
is very different from asking for help face-to-face.
In a face-to-face conversation,
the

answer to a question arrives within seconds,
whereas in email it can take hours or days.
This

means that when the answer finally comes back,
the person asking the question has
to go

back and read the conversation history
thread to re-establish context.

Or maybe they think they’re going to be disclosing
Top Secret Information to Microsoft if

they
share the code that they can’t get to work.
Trust me, we don’t care about your Top Secret

Algorithm
for Beating the Stock Market With No Money Down.
Go ahead and remove those

from the code.
We just want to see how you are interfacing with the shell.
(And besides, you

probably should be removing them anyway,
since they are irrelevant and are not part
of a

minimal program that reproduces the problem.)

What would your next guess be?

“Perhaps you’re adding your items with the wrong menu item ID.”
That would explain the

problem,
because returning
 MAKE_HRESULT(SEVERITY_SUCCESS,
FACILITY_NULL, 1)

means
“I successfully added up to one menu item starting at
 idCmdFirst .”
But if they

didn’t actually add it at idCmdFirst ,
then when the user selects the item,
it won’t be in the

range they claimed,
and therefore the invoke won’t get routed to them.

“Your intuition is wrong again.
Here’s the code we’re using.”

I can abide by the “Ha ha, you guessed wrong again!”
because it at least prodded them into

sharing some code.
Not much code, mind you, but at least some.

HRESULT SooperSeekrit::QueryContextMenu(

 HMENU hmenu,

 UINT indexMenu,

 UINT idCmdFirst,

 UINT idCmdLast,

 UINT uFlags)

{

 UINT cItemsAdded = 0;

 if (!(uFlags & CMF_DEFAULTONLY) &&

 InsertMenuItem(hmenu,

 indexMenu,

 TRUE,

 &globalMenuItemInfo)) {

 return MAKE_HRESULT(SEVERITY_SUCCESS, FACILITY_NULL, 1);

 }

 return MAKE_HRESULT(SEVERITY_SUCCESS, FACILITY_NULL, 0);

}

The next thing you should have noticed is that they
never actually used the
 idCmdFirst

parameter.
So how could they claim to be adding the items with the correct
menu item ID if

they ignore the variable that tells them what
the correct menu item ID is?

3/3

“Could you tell us more about the
 globalMenuItemInfo
variable?
In particular, what value

does it use for the wID member,
and how do you make sure that it is equal to
 idCmd‐

First ?
It seems that you are missing some lines of code here:

globalMenuItemInfo.fMask |= MIIM_ID;

globalMenuItemInfo.wID = idCmdFirst;

but perhaps there’s something going on that we are missing.”

The customer cheerfully replied,
“Oops, sorry, didn’t notice that.
Works great now, thanks!”

I didn’t bother to draw their attention to the fact that they
lied when they responded to the

question
“Did you add the menu item with the correct ID?”
with “Wrong again! BZZZT!”

The point of today’s story is that you, gentle reader,
already know how to debug these types of

issues.
You just have to take what you know and apply it to the situation
at hand.
If you know

how composite context menu dispatch works,
then you can come up with failure modes in

which the dispatcher
fails to match up the menu item with the component.

Exercise:
The customer is still not out of the woods yet.
What other bug remains in their

IContextMenu::QueryContextMenu
implementation?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

