
1/2

January 30, 2013

Why doesn’t HeapValidate detect corruption in the
managed heap?

devblogs.microsoft.com/oldnewthing/20130130-00

Raymond Chen

A customer had a program that was corrupting the managed heap by p/invoking incorrectly.

The problem didn’t show up until the next garbage collection pass, at which point the CLR

got all freaked-out-like. “According to Knowledge Base article 286470, the GFlags tool is

supposed to catch heap corruption, but it doesn’t catch squat.”

Depending on your point of view, this is either a case of the customer not understanding

what things mean in context or of the KB article author looking at the world through kernel-

colored glasses.

The GFlags tool, pageheap, full pageheap, and the HeapValidate function all operate on

heaps, but the sense of the word heap here is “heaps created by the HeapCreate function.”

If your program does a VirtualAlloc and then carves out sub-allocations from it, well, it’s

not like GFlags and HeapValidate are psychic and can magically reverse-engineer your

code in order to understand your custom heap implementation and be able to determine

whether your custom heap is corrupted.

Clearly no such function could be written, because that’s even harder than the Halting

Problem! One property of a non-corrupted heap is that it will not send the heap manager into

an infinite loop. Therefore, proving that the heap is not corrupted, given no information

about the heap implementation other than the code itself, would require proving that the

next heap call will return. And that’s just one of the things the imaginary ValidateAnyHeap

function would have to do. (We try to limit ourselves to one impossible thing at a time.)

The HeapValidate function only knows how to validate heaps created by the HeapCreate

function. It does not have magic insight into custom heap implementations. The GFlags

program modifies the behavior of heaps created by the HeapCreate function, because it

naturally does not know what debugging features you’ve added to your custom heap

implementation, so it doesn’t know what it needs to do to turn them on and off.

As far as the kernel folks are concerned, “heap” means “something created by the Heap‐

Create function.” Anything else is just an imposter.

https://devblogs.microsoft.com/oldnewthing/20130130-00/?p=5403
http://support.microsoft.com/kb/286470
http://blogs.msdn.com/b/oldnewthing/archive/2006/01/16/513311.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/12/10163578.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/05/19/420038.aspx

2/2

If you are looking for corruption in a custom heap implementation, then you need to go ask

the authors of that custom heap implementation if they provided any debugging facilities for

that heap.

