
1/3

January 25, 2013

When you have a SAFEARRAY, you need to know what it
is a SAFEARRAY *of*

devblogs.microsoft.com/oldnewthing/20130125-00

Raymond Chen

A customer had a problem with SAFEARRAY ,
or more specifically, with
 CComSafeArray .

CComSafeArray<VARIANT> sa;

GetAwesomeArray(&sa);

LONG lb = sa.GetLowerBound();

LONG ub = sa.GetUpperBound();

for (LONG i = lb; i <= ub; i++) {

CComVariant item = sa.GetAt(i);

… use the item …

}

The GetAt method returns a
 VARIANT& ,
and when it is copy-constructed into
 item ,
the

DISP_E_BADVARTYPE
exception is raised.

On the other hand, if the offending line is changed to

CComQIPtr<IAwesome> pAwesome = sa.GetAt(i).punkVal;

then the problem goes away.

Your initial reaction to this code would be that
there is an off-by-one error in the loop

control,
but it turns out that there isn’t because
 SAFEARRAY uses inclusive upper bounds

rather than exclusive.

The first step in debugging this is seeing what is
in the bad variant that makes the copy

constructor
think it’s not a valid variant type.

Inspecting in the debugger shows that the variant
returned by GetAt has a valid
 punk , but

the vt is 0x1234 .
Well, that’s not a valid variant type, so that’s the proximate
cause of the

problem.

https://devblogs.microsoft.com/oldnewthing/20130125-00/?p=5443
http://blogs.msdn.com/b/oldnewthing/archive/2009/08/28/9887637.aspx

2/3

How did an invalid variant type get into your SAFEARRAY ?

At this point the customer realized that maybe their code to create
the array was faulty,
so

they offered to share it.

void GetAwesomeArray(SAFEARRAY **ppsa)

{

SAFEARRAY *psa = SafeArrayCreateVector(VT_UNKNOWN, 0, m_count);

for (LONG i = 0; i < m_count; i++) {

 CComPtr<IAwesome> spAwesome;

 CreateAwesomeThing(i, &spAwesome);

 SafeArrayPutElement(psa, &i, spAwesome);

}
*ppsa = psa;

}

Okay, now all the pieces fell into place.

The GetAwesomeArray
function is creating an array of VT_UNKNOWN ,
but the code

fragment that calls
 GetAwesomeArray
treats it as an array of VT_VARIANT .

Your array of IUnknown* is being misinterpreted
as an array of VARIANT .
That explains all

the symptoms:
The vt is wrong, because it’s really just the
low-order word of the first

IUnknown* .
Ignoring the vt and going straight for the
 punk seems to work because

that’s where
the second IUnknown* happens to be.
(Or third, if you are compiling as 32-bit.)

In other words, it’s as if you did a
 reinterpret_cast<VARIANT&>(punkArray[0]) .

If you had used regular C-style arrays
or a C++ collection,
then the compile-time type

checking would have told you that
you mismatched the producer and consumer.
But since

you went through a SAFEARRAY ,
that compile-time type information is lost,
since a

SAFEARRAY is a polymorphic array.
It now becomes your job to keep track of what you have

an array of,
and its dimensions and bounds.

You can keep track of this information via documentation,
“This function returns a 1-

dimensional
 SAFEARRAY of VT_IUNKNOWN ,
with lower bound 0 and variable upper bound.”

Or you can check at runtime, by calling
 SafeArrayGetVartype
to see what the base type is,

and
 SafeGetDim to see how many
dimensions the array has,
and
 SafeArrayGetLBound

and
 SafeArrayGetUBound
to obtain the upper and lower bounds for those dimensions.

The code above seemed not to be sure which model it wanted
to use.
It trusted the base type

and the dimension,
but checked the upper and lower bounds.

Anyway,
assuming we are going with the “keep track via documentation”
approach,
the

solution for the original problem is to have
the producer and consumer agree on exactly what

kind of
 SAFEARRAY is being handed around.
Either produce an array of VT_UNKNOWN and

3/3

consume it as a CComSafeArray<IUnknown*>
or produce an array of VT_VARIANT and

consume
it as a
 CComSafeArray<VARIANT> .

