
1/2

January 11, 2013

Understanding errors in classical linking: The delay-load
catch-22

devblogs.microsoft.com/oldnewthing/20130111-00

Raymond Chen

Wrapping up our week of
understanding the classical model for linking,
we’ll put together all

the little pieces we’ve learned this week
to puzzle out a linker problem:
The delay-load catch-

22.

You do some code cleanup,
then rebuild your project, and you get

LNK4199: /DELAYLOAD:SHLWAPI ignored; no imports found from SHLWAPI

What does this error mean?

It means that you passed a DLL via the
/DELAYLOAD command line switch
which your

program doesn’t actually use,
so the linker is saying,
“Um, you said to treat this DLL special,

but I don’t see that DLL.”

“Oh, right,” you say to yourself.
“I got rid of a call to
 HashString ,
and that was probably the

last remaining function
with a dependency on
 SHLWAPI.DLL .
The linker is complaining that

I asked to delay-load a DLL
that I wasn’t even loading!”

You fix the problem by deleting
 SHLWAPI.DLL from the /DELAYLOAD
list,
and removing

SHLWAPI.LIB from the list of import libararies.
And then you rebuild, and now you get

LNK2019: unresolved external ‘__imp__HashData’ referenced in function ‘HashString’

“Wait a second, I stopped calling that function.
What’s going on!”

What’s going on is that the
 HashString function got
taken along for the ride
by another

function.
The order of operations in the linker is

Perform classical linking

Perform nonclassical post-processing

Remove unused functions (if requested)

Apply DELAYLOAD (if requested)

https://devblogs.microsoft.com/oldnewthing/20130111-00/?p=5583
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/07/10382714.aspx
http://msdn.microsoft.com/en-us/library/a5x38f99.aspx
http://msdn.microsoft.com/en-us/library/yx9zd12s.aspx
http://msdn.microsoft.com/en-us/library/799kze2z.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/08/10383017.aspx

2/2

The linker doesn’t have a crystal ball and say,
“I see that in the future, the ‘remove unused

functions’ step
is going to delete this function, so I can throw it away right now
during the

classical linking phase.”

You have a few solutions available to you.

If you can modify the library, you can
split the HashString
function out
so that it doesn’t

come along for the ride.

If you cannot modify the library,
then you’ll have to
use the /IGNORE flag to explicitly ignore

the warning.

Exercise:
Another option is to leave SHLWAPI.LIB
in the list of import libraries,
but

remove it from the DELAYLOAD list.
Why is this a dangerous option?
What can you do to

make it less dangerous?

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/01/10/10383642.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

