
1/3

January 10, 2013

Understanding the classical model for linking:
Sometimes you don’t want a symbol to come along for a
ride

devblogs.microsoft.com/oldnewthing/20130110-00

Raymond Chen

Continuing our study of
the classical model for linking,
let’s take another look at the trick of

taking symbols along for the ride.

The technique of taking symbols along for the ride is quite handy
if that’s what you want,
but

sometimes you don’t actually want it.
For example, a symbol taken along for the ride may

create
conflicts or create unwanted dependencies.

Here’s an example:
Suppose you have a library called stuff.lib
where you put functions

that are
used by various modules in different projects.
One of the files in your library might

look like this:

https://devblogs.microsoft.com/oldnewthing/20130110-00/?p=5593
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/07/10382714.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/08/10383017.aspx

2/3

// filedatestuff.cpp

BOOL GetFileCreationTimeW(

 LPCWSTR pszFile,

 FILETIME *pft)

{

 WIN32_FILE_ATTRIBUTE_DATA wfad;

 BOOL fSuccess = GetFileAttributesExW(pszFile,

 GetFileExInfoStandard,

 &wfad);

 if (fSuccess) {

 *pft = wfad.ftCreationTime;

 } else {

 pft->dwLowDateTime = 0;

 pft->dwHighDateTime = 0;

 }

 return fSuccess;

}

BOOL GetFileCreationTimeAsStringW(

 LPCWSTR pszFile,

 LPWSTR pszBuf,

 UINT cchBuf)

{

 FILETIME ft;

 BOOL fSuccess = GetFileCreationTimeW(pszFile, &ft);

 if (fSuccess) {

 fSuccess = SHFormatDateTimeW(&ft, NULL,

 pszBuf, cchBuf) > 0;

 }

 return fSuccess;

}

Things are working out great,
people like the helper functions in your library,
and then you

get a bug report:

When my program calls the
 GetFileCreationTimeW
function,
I get a linker error:
unresolved external: __imp__SHFormatDateTimeW.
If I remove my call to
GetFileCreationTimeW ,
then my program builds fine.

You scratch your head.
“The program is calling
 GetFileCreationTimeW ,
but that function

doesn’t call
 SHFormatDateTimeW ,
so why are we getting an unresolved external error?
Any

why hasn’t anybody else run into this problem before?”

First question first.
Why are we getting an unresolved external error
for a nonexistent

external dependency?

3/3

Because the
 GetFileCreationTimeAsStringW
function got taken along for the ride.
When

the customer’s program called
 GetFileCreationTimeW ,
that pulled in the

filedatestuff.obj file,
and that OBJ file contains both
 GetFileCreationTimeW
and

GetFileCreationTimeAsStringW .
Since they are in the same OBJ file,
pulling in one

function pulls in all of them.

The fix is to split the filedatastuff.cpp file
into two files,
one for each function.
That

way, when you pull in one function,
nobody else comes along for the ride.

Now to the second half of the question:
Why did nobody run into this problem before?

The
 GetFileCreationTimeW
function has a dependency on
 GetFileAttributesExW ,

which is a function in KERNEL32.DLL .
On the other hand, the
 GetFileCreationTimeAs‐

StringW
function has a dependency on
 SHFormatDateTimeW ,
which is a function in

SHLWAPI.DLL .
If somebody lists
 KERNEL32.LIB as a dependent library
in their project,
but

they don’t include
 SHLWAPI.LIB on that list,
then they will encounter this problem
because

the linker will pull in the reference to
 SHFormatDateTimeW
and have no way of resolving it.

Nobody ran into this before because SHLWAPI.LIB
has lots of cute little functions in it,
so

most people include it in their project.
Only if somebody is being frugal and leaving

SHLWAPI.LIB out of their project
will they run into this problem.

Bonus chatter:
The suggestion to split the file into two will work,
but if you are really

clever, you can still do some consolidation.
Instead of splitting up files by functional group

(for example, “all FILETIME functions”),
you need to split them up based on their

dependencies
(“functions that are dependent solely on SHLWAPI.LIB “).
Of course, this type

of organization may make the code harder
to follow (“Why did you put
 GetFileCreation‐

TimeAsStringW
and
 HashString
in the same file?”),
so you have to balance this against

maintainability and
readability.
For example, somebody who is not aware of the classical

model for linking may add a function to the file that has
a dependency on SHELL32.DLL ,

and now your careful separation has fallen apart.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

