
1/3

January 9, 2013

Understanding the classical model for linking: You can
override an LIB with another LIB, and a LIB with an OBJ,
but you can’t override an OBJ

devblogs.microsoft.com/oldnewthing/20130109-00

Raymond Chen

If you study the classical model for linking, you’ll see that OBJ files provided directly to the

linker have a special property: They are added to the module even if nobody requests a

symbol from them.

OBJs bundled into a library are pulled into the module only if they are needed to resolve a

needed symbol request. If nobody needs a symbol in the OBJ, then the OBJ doesn’t get added

to the module. On the other hand, OBJs handed directly to the linker get added to the

module whether anybody wants them or not.

Last time, we learned about the along for the ride technique which lets you pull components

into a module even if they were not explicitly requested by an OBJ. Today’s problem is sort of

the reverse of this: If you move an OBJ from the explicit OBJ list to a library, then somebody

has to remember to take it for a ride.

Some time ago, Larry Osterman described how some components use sections to have one

component automatically register itself with another component when the OBJ is pulled into

the module. But in order for that to work, you have to make sure the OBJ gets pulled into the

module in the first place. (That’s what Larry’s CallForceLoad function is for: By putting it

an explicit OBJ, that function forces the OBJ from the LIB to be pulled in. And then, since

nobody ever calls CallForceLoad , a later linker pass discards it as an unused function.)

Another consequence of the algorithm by which the linker pulls OBJs from libraries to form a

module is that if a needed symbol can be satsified without consulting a library, then the OBJ

in the library will not be used. This lets you override a symbol in a library by explicitly placing

it an OBJ. You can also override a symbol in a library to putting it in another library that gets

searched ahead of the one you want to override. But you can’t override a symbol in an explicit

OBJ, because those are part of the initial conditions.

Exercise:

https://devblogs.microsoft.com/oldnewthing/20130109-00/?p=5613
https://devblogs.microsoft.com/oldnewthing/20130107-00/?p=5633
https://devblogs.microsoft.com/oldnewthing/20130108-00/?p=5623
https://docs.microsoft.com/en-us/archive/blogs/larryosterman/when-i-moved-my-code-into-a-library-what-happened-to-my-atl-com-objects

2/3

Discuss this user’s analysis of a linker issue.

I have three files:

// awesome1.cpp

int index;

// awesome2.cpp

extern int index;

void setawesomeindex(int i)

{

index = i;

}

// main.cpp

int index = 0;

int main(int, char**)

{

setawesomeindex(3);

return index;

}

When I link the object files together, I get an error complaining that index is multiply
defined, as expected. On the other hand, if I put awesome1.cpp and awesome2.cpp into a
library, then the program links fine, but the two copies of the index variable were merged by
the linker! When I set the awesome index to 3, it also changes my main program’s variable
index which has the same name. Why is the linker merging my variables, and how can I

keep them separate?

When I share my awesome.lib with others, I don’t want to have to give them a list of all my
global variables and say, “Don’t create a global variable with any of these names, because they
will conflict with my library.” (And that would also prevent me from adding any new global
variables to my library.)

Exercise: Clarify the following remark by making it more precise and calling out the cases

where it is false. “Multiple definitions for a symbol are allowed if they appear in LIBs.”

Exercise (harder): The printf function is in a bit of a pickle regarding whether it should

support the floating point formats. If it includes them unconditionally, then its use of the

floating point data types causes the floating point emulation library to be linked into the

module, even if the module didn’t otherwise use floating point! Use what you’ve learned so

far this week to provide one way that the printf function could determine whether it

should include floating point format support based on whether the module uses floating

point.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

