
1/3

January 8, 2013

Understanding the classical model for linking: Taking
symbols along for the ride

devblogs.microsoft.com/oldnewthing/20130108-00

Raymond Chen

Last time, we learned the basics of
the classical model for linking.
Today, we’ll look at the

historical background for that model,
and how the model is exploited by libraries.

In the classical model,
compilers and assemblers consume source code and spit out
an OBJ

file.
They do as much as they can, but eventually they get stuck
because they don’t have the

entire module at their disposal.
To record the work remaining to be done, the OBJ file

contains
various sections:
a data section, a code section (historically
and confusingly called

text),
an uninitialized data section, and so on.
The linker resolves symbols, and then for each

OBJ file
that got pulled into the module,
it combines all the code sections into one giant code

section,
all the data sections into one giant data section, and so on.

One thing you may have noticed is that the unit of consumption
is the OBJ file.
If an OBJ file

is added to the module,
the whole thing gets added,
even if you needed only a tiny part
of the

OBJ file.
Historically,
the reason for this rule is that the compilers and assemblers
did not

include information in the OBJ file to indicate
how to separate all the little pieces.
It’s like if

somebody said,
“Can you get me a portable mp3 player?”
and the only thing available in the

library
was a smartphone.
Sure, it plays mp3 files, but there’s a lot of other
electronic junk in

there that you didn’t ask for,
but it came along for the ride.
And you don’t know how to

disassemble the smartphone
and extract just the mp3-player part.

This behavior is actually exploited as a feature,
because it allows for tricks like this:

https://devblogs.microsoft.com/oldnewthing/20130108-00/?p=5623
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/07/10382714.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/04/27/10002865.aspx

2/3

/* magicnumber.h */

extern int magicNumber;

/* magicnumber.c */

int magicNumber;

class InitMagicNumber

{

InitMagicNumber()

{
 magicNumber = …;

}
}

g_InitMagicNumber;

I’m not going to go into the magic of
how the compiler knows to construct the
g_InitMagic‐

Number
object at module entry;
I’ll let you read up on that.

The point is that if anybody in the module refers
to the magicNumber variable,
then that

causes magicnumber.obj
to be pulled into the module, which brings in not
just the magic‐

Number variable,
but also the
 g_InitMagicNumber object,
which initializes the magic

number when
the process starts.

One place the C runtime library took advantage of this
was in deciding whether or not to

include floating point
support.

As you may recall, the 8086 processor did not have
native floating support.
You had to buy

the 8087 coprocessor for that.
It was therefore customary for programs of that era
to include

a floating point library if they
did any floating point arithmetic.
The library would redirect

floating point
operations from the coprocessor to the emulator.

The floating point emulation library was pretty
hefty, and it would have been a waste to

include
it for programs that didn’t use floating point
(which was most of them),
so the

compiler used a trick to allow it to pull
in the floating point library only if the
program used

floating point:
If you used floating point,
then the compiler added a needed symbol
to your

OBJ file:
 __fltused .

That magical
 __fltused symbol was marked as
provided
by… the floating point emulation

library!

The linker found the symbol in an OBJ in
the floating point emulation library,
and that

served as the loose thread that
caused the rest of the floating point
emulation library to be

pulled into your module.

Next time,
we’ll look at the interaction between OBJ files and LIB files.

http://msdn.microsoft.com/library/7977wcck.aspx

3/3

Bonus reading:
Larry Osterman gives
another example
of this trick.

Raymond Chen

Follow

http://blogs.msdn.com/b/larryosterman/archive/2004/09/27/234840.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

