
1/4

January 7, 2013

Understanding the classical model for linking,
groundwork: The algorithm

devblogs.microsoft.com/oldnewthing/20130107-00

Raymond Chen

The classical model for linking goes like this:

Each OBJ file contains two lists of symbols.

1. Provided symbols:
These are symbols the OBJ contains definitions for.

2. Needed symbols:
These are symbols the OBJ would like the definitions for.

(The official terms for these are exported and
imported,
but I will use
provided and needed

to avoid confusion with
the concepts of exported and imported functions in DLLs,
and

because provided and needed more clearly
captures what the two lists are for.)

Naturally, there is other bookkeeping information in there.
For example, for provided

symbols, not only is the name given,
but also additional information on locating the

definition.
Similarly, for needed symbols, in addition to the name,
there is also information

about what should be done once its
definition has been located.

Collectively, provided and needed symbols are known as
symbols with external linkage,
or

just externals for short.
(Of course, by giving them the name
symbols with external linkage,

you would expect there to be things known as
symbols with internal linkage,
and you’d be

right.)

For example, consider this file:

https://devblogs.microsoft.com/oldnewthing/20130107-00/?p=5633


2/4

// inventory.c

extern int InStock(int id);

int GetNextInStock()

{

 static int Current = 0;

 while (!InStock(++Current)) { }

 return Current;

}


This very simple OBJ file has one provided symbol,
 GetNextInStock :
That is the object

defined in this file that can be used by other files.
It also has one needed symbol,
 InStock :

That is the object required by this file in order to work,
but which the file itself did not

provide a definition for.
It’s hoping that somebody else will define it.
There’s also a symbol

with internal linkage:
Current,
but that’s not important to the discussion,
so I will ignore it

from now on.

OBJ files can hang around on their own,
or they can be bundled together into a LIB file.

When you ask the linker to generate a module,
you hand it a list of OBJ files and a list of LIB

files.
The linker’s goal is to resolve all of the
needed symbols
by matching them up to a

provided symbol.
Eventually, everything needed will be provided,
and you have yourself a

module.

To do this, the linker keeps track of which symbols in the module
are resolved and which are

unresolved.

A resolved symbol is one for which a provided symbol has been
located and added to

the module.
Under the classical model, a symbol can be resolved only once.
(Otherwise,

the linker wouldn’t know which one to use!)

An unresolved symbol is one that is needed by the module,
but for which no provider

has yet been identified.

Whenever the linker adds an OBJ file to the module,
it goes through the list of provided and

needed symbols
and updates the list of symbols in the module.
The algorithm for updating

this list of symbols is obvious
if you’ve been paying attention, because it is a simple matter
of

preserving the invariants described above.

For each provided symbol in an OBJ file added to a module:

If the symbol is already in the module marked as resolved,
then
raise an error

complaining that an object has multiple
definitions.

http://msdn.microsoft.com/library/72zdcz6f.aspx


3/4

If the symbol is already in the module
marked as unresolved, then change its marking

to resolved.

Otherwise, the symbol is not already in the module.
Add it and mark it as resolved.

For each needed symbol in an OBJ file added to a module:

If the symbol is already in the module marked as resolved,
then leave it marked as

resolved.

If the symbol is already in the module marked as unresolved,
then leave it marked as

unresolved.

Otherwise, the symbol is not already in the module.
Add it and mark it as unresolved.

The algorithm the linker uses to resolve symbols goes like this:

Initial conditions:
Add all the explicitly-provided OBJ files to the module.

While there is an unresolved symbol:

Look through all the LIBs
for the first OBJ to provide the symbol.

If found: Add that OBJ to the module.

If not found:
Raise an error complaining of an unresolved external.
(If the linker

has the information available,
it may provide
additional details.)

That’s all there is to linking and unresolved externals.
At least, that’s all there is to the

classical model.

Next time, we’ll start looking at the consequences of the rules
for classical linking.

Sidebar:
Modern linkers introduce lots of non-classical behavior.
For example,
the rule

If the symbol is already in the module marked as resolved,
then
raise an error

complaining that an object has multiple
definitions.

has been replaced with the rules

If the symbol is already in the module marked as resolved:

If both the original symbol and the new symbol are marked

__declspec(selectany) ,
then do not raise an error.
Pick one arbitrarily and

discard the other.

Otherwise,
raise an error
complaining that an object has multiple
definitions.

Another example of non-classical behavior is
dead code removal.
If you pass
the
/OPT:REF

linker flag,
then after all externals have been resolved,
the linker goes through and starts

discarding functions and data
that are never referenced,
taking advantage of another non-

classical feature
(packed functions)
to know where each function begins and ends.

http://msdn.microsoft.com/en-us/library/f6xx1b1z.aspx
http://msdn.microsoft.com/en-us/library/799kze2z.aspx
http://msdn.microsoft.com/library/72zdcz6f.aspx
http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
http://msdn.microsoft.com/library/72zdcz6f.aspx
http://msdn.microsoft.com/en-us/library/bxwfs976.aspx
http://msdn.microsoft.com/en-us/library/xsa71f43.aspx


4/4

But I’m going to stick with the classical model,
because you need to understand classical

linking
before you can study non-classical behavior.
Sort of how in physics, you need to learn

your classical mechanics
before you study relativity.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

