
1/2

January 4, 2013

What’s the guidance on when to use rundll32? Easy:
Don’t use it

devblogs.microsoft.com/oldnewthing/20130104-00

Raymond Chen

Occasionally, a customer will ask, “What is Rundll32.exe and when should I use it instead of

just writing a standalone exe?”

The guidance is very simple: Don’t use rundll32. Just write your standalone exe.

Rundll32 is a leftover from Windows 95, and it has been deprecated since at least Windows

Vista because it violates a lot of modern engineering guidelines. If you run something via

Rundll32, then you lose the ability to tailor the execution environment to the thing you’re

running. Instead, the environment is set up for whatever Rundll32 requests.

Data Execution Prevention policy cannot be applied to a specific Rundll32 command

line. Any policy you set applies to all Rundll32 commands.

Address Space Layout Randomization cannot be applied to a specific Rundll32

command line. Any policy you set applies to all Rundll32 commands.

Application compatibility shims cannot be applied to a specific Rundll32 command

line. Any application compatibilty shim you enable will be applied to all Rundll32

commands.

SAFER policy cannot be applied to a specific Rundll32 command line. Any policy you

set applies to all Rundll32 commands.

The Description in Task Manager will be Rundll32’s description, which does not help

users identify what the specific Rundll32 instance is doing.

You cannot apply a manifest to a specific Rundll32 command line. You have to use the

manifest that comes with Rundll32. (In particular, this means that your code must be

high DPI aware.)

The Fault Tolerant Heap cannot be enabled for a specific Rundll32 command line. Any

policy you set applies to all Rundll32 commands.

All Rundll32.exe applications are treated as the same program for the purpose of

determining which applications are most frequently run.

Explorer tracks various attributes of an application based on the executable name, so

all Rundll32.exe commands will be treated as the same application. (For example, all

windows hosted by Rundll32 will group together.)

https://devblogs.microsoft.com/oldnewthing/20130104-00/?p=5643

2/2

You won’t get any Windows Error Reporting reports for crashes in your Rundll32.exe

command line, because they all got sent to the registered owner of Rundll32.exe (the

Windows team).

Many environmental settings are implied by the executable. If you use Rundll32, then

those settings are not chosen by you since you didn’t control how Rundll32 configures

its environment.

Rundll32 is marked as TSAWARE, so your Rundll32 command must be Terminal

Services compatible.

Rundll32 is marked as LARGEADDRESSAWARE, so your Rundll32 command must be

3GB-compatible.

Rundll32 specifies its preferred stack reserve and commit, so you don’t control

your stack size.

Rundll32 is marked as compatible with the version of Windows it shipped with,

so it has opted into all new behaviors (even the breaking ones), such as

automatically getting the HeapEnableTerminationOnCorruption flag set on all

its heaps.

Windows N+1 may add a new behavior that Rundll32 opts into, but which your

Rundll32 command line does not support. (It can’t, because the new behavior didn’t

exist at the time you wrote your Rundll32 command line.) As you can see, this has

happened many times in the past (for example, high DPI, Terminal Services

compatibility, 3GB compatibility), and it will certainly happen again in the future.

You get the idea.

Note also that Rundll32 assumes that the entry point you provide corresponds to a task

which pumps messages, since it creates a window on your behalf and passes it as the first

parameter. A common mistake is writing a Rundll32 entry point for a long-running task that

does not pump messages. The result is an unresponsive window that clogs up broadcasts.

Digging deeper, one customer explained that they asked for guidance making this choice

because they want to create a scheduled task that runs code inside a DLL, and they wanted to

decide whether to create a Rundll32 entry point in their DLL, or whether they should just

create a custom executable whose sole job is loading the DLL and calling the custom code.

By phrasing it as an either/or question, they missed the third (correct) option: Create your

scheduled task with an IComHandlerAction that specifies a CLSID your DLL implements.

http://msdn.microsoft.com/library/01cfys9z
http://msdn.microsoft.com/library/wz223b1z
http://blogs.msdn.com/b/oldnewthing/archive/2004/08/12/213468.aspx
http://msdn.microsoft.com/library/8cxs58a6
http://blogs.msdn.com/b/oldnewthing/archive/2005/03/10/392118.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/09/26/772222.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/02/10/529525.aspx
http://msdn.microsoft.com/en-us/library/aa380613.aspx

