
1/4

December 24, 2012

What is the proper handling of WM_RENDERFORMAT
and WM_RENDERALLFORMATS?

devblogs.microsoft.com/oldnewthing/20121224-00

Raymond Chen

Jeremy points out that the documentation for
 SetClipboardData says that the clipboard

owner must not call OpenClipboard when responding
to the
 WM_RENDERFORMAT and

WM_RENDERALLFORMATS messages.
On the other hand, the documentation for
 WM_RENDER‐

ALLFORMATS says that
the owner must call OpenClipboard and
 EmptyClipboard .
Which

is it?

It’s none of them!

Let’s start with WM_RENDERFORMAT .
The reference implementation for a
 WM_RENDERFORMAT

handler goes like this,
with all error handling deleted for expository purposes:

case WM_RENDERFORMAT:

CLIPFORMAT cf = (CLIPFORMAT)wParam;

hData = GenerateFormat(cf);

SetClipboardData(cf, hData);

return 0;

In response to
 WM_RENDERFORMAT ,
you simply place the format on the clipboard.
No

opening is required.
In fact, attempting to open will fail because
the clipboard is already

open:
It has been opened by the application whose call to
 GetClipboardData triggered
the

delay-render!

Next comes
 WM_RENDERALLFORMATS .
The original reference implementation goes like this,

again with error checking deleted:

// code in italics is wrong -- see discussion below

case WM_RENDERALLFORMATS:

OpenClipboard(hwnd);

SendMessage(hwnd, WM_RENDERFORMAT, CF_FORMAT1, 0);

SendMessage(hwnd, WM_RENDERFORMAT, CF_FORMAT2, 0);

CloseClipboard();

return 0;

https://devblogs.microsoft.com/oldnewthing/20121224-00/?p=5763
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040446

2/4

In response to
 WM_RENDERALLFORMATS ,
you open the clipboard,
then render all your formats

into it,
and then close the clipboard.
And one to render your formats is simply to send

yourself
a fake WM_RENDERFORMAT message,
which gets the code in the earlier code block to

generate
the format and place it on the clipboard.

So you see that everybody is wrong!

The
 WM_RENDERALLFORMATS handler
does call
 OpenClipboard —if you tried it without the

OpenClipboard call,
you’d notice that the data never made it to the clipboard—and
it

doesn’t call EmptyClipboard .
(If you did, you’d notice that the
 EmptyClipboard would

have wiped out your
non-delay-rendered data!)

Where did I get these reference implementations from?
I got them from the Windows 3.1

SDK.
(And that explains the bug; read on.)

In real life, you probably would also listen for the
 WM_DESTROYCLIPBOARD message so you

would
know that you are no longer the clipboard owner, in which case
you wouldn’t bother

rendering anything.

I haven’t written code in a while, so let’s write some code.
Start with our
scratch program
and

make these changes.
We’ll start by writing it incorrectly:

http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

3/4

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

if (OpenClipboard(hwnd)) {

 EmptyClipboard();

 SetClipboardData(CF_UNICODETEXT, NULL);

 CloseClipboard();

}
return TRUE;

}

const WCHAR c_szText[] = L"hello";

HANDLE

OnRenderFormat(HWND hwnd, UINT fmt)

{

if (fmt == CF_UNICODETEXT)

{
 HGLOBAL hglob;

 if (SUCCEEDED(CreateHGlobalFromBlob(

 c_szText, sizeof(c_szText),

 GMEM_MOVEABLE, &hglob))) {

 if (!SetClipboardData(fmt, hglob)) GlobalFree(hglob);

 }

}
return 0;

}

void

OnRenderAllFormats(HWND hwnd)

{

if (OpenClipboard(hwnd)) {

 OnRenderFormat(hwnd, CF_UNICODETEXT);

 CloseClipboard();

}
}

 HANDLE_MSG(hwnd, WM_RENDERFORMAT, OnRenderFormat);

 HANDLE_MSG(hwnd, WM_RENDERALLFORMATS, OnRenderAllFormats);

This program puts delay-rendered text on the clipboard
when it starts up,
When the request

for text arrives, we just return the word
hello.
If we are asked to render all our formats, we

render all our formats
by calling our internal function once for each format we support.
(All

one of them.)

There’s a tiny race condition in that implementation above,
though.
What if somebody takes

ownership of the clipboard
while you’re trying to render all your formats?
Let’s force the

race condition.
Set a breakpoint on the OnRenderAllFormats
function,
run the program,

and close the window.
The breakpoint will hit.

Switch away from the debugger and open Notepad.
Type 123 into Notepad, then select it and

type Ctrl + C to copy it to the clipboard.

http://blogs.msdn.com/b/oldnewthing/archive/2008/03/11/8080077.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/05/10/10009448.aspx

4/4

Notepad will hang for a while, since the window manager is trying
to send a
 WM_DESTROY‐

CLIPBOARD message to
tell the previous clipboard owner that it is no longer responsible
for

the data on the clipboard.
Let the call time out,
at which point Notepad will wake back up and

put 123
text on the clipboard.
Now resume execution of the scratch program,
so that it puts

the Unicode word hello onto the clipboard.

Okay, go back to Notepad and hit Ctrl + V .
Look, it pasted hello instead of 123.
Oops,

our delay-rendering program destroyed the clipboard
as it exited.
If the application had put

something more complicated on the clipboard,
then our scratch program would have created

a mishmash of old and new data.

To protect against this race condition, make the following
small change:

void

OnRenderAllFormats(HWND hwnd)

{

if (OpenClipboard(hwnd)) {

 if (GetClipboardOwner() == hwnd) {

 OnRenderFormat(hwnd, CF_UNICODETEXT);

 }

 CloseClipboard();

}
}

After opening the clipboard, we check if we are still the
window responsible for the clipboard

contents.
Only if so do we render our delay-rendered formats.

Exercise: Why is the GetClipboardOwner
test done after the OpenClipboard ?
Wouldn’t

it be better to bail out quickly if we are not the clipboard
owner and avoid opening the

clipboard in the first place?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

