
1/2

December 21, 2012

Why do BackupRead and BackupWrite require
synchronous file handles?

devblogs.microsoft.com/oldnewthing/20121221-00

Raymond Chen

The BackupRead and BackupWrite functions require that the handle you provide by

synchronous. (In other words, that they not be opened with FILE_FLAG_OVERLAPPED .)
A

customer submitted the following question:

We have been using asynchronous file handles with the BackupRead . Every so often, the call
to BackupRead will fail, but we discovered that as a workaround, we can just retry the
operation, and it will succeed the second time. This solution has been working for years.

Lately, we’ve been seeing crash when trying to back up files, and the stack traces in the crash
dumps appear to be corrupted. The issue appears to happen only on certain networks, and the
problem goes away if we switch to a synchronous handle.

Do you have any insight into this issue? Why were the BackupRead and BackupWrite
functions designed to require synchronous handles?

The BackupRead and BackupWrite functions have historically issued I/O against the

handles provided on the assumption that they are synchronous. As we saw a while ago, doing

so against an asynchronous handle means that you’re playing a risky game: If the I/O

completes synchronously, then nobody gets hurt, but if the I/O goes asynchronous, then the

temporary OVERLAPPED structure on the stack will be updated by the kernel when the I/O

completes, which could very well be after the function that created it has already returned.

The result: A stack smash. (Related: Looking at the world through kernel-colored glasses.)

This oversight in the code (blindly assuming that the handle is a synchronous handle) was

not detected until 10 years after the API was originally designed and implemented. During

that time, backup applications managed to develop very tight dependencies on the

undocumented behavior of the backup functions. The backup folks tried fixing the bug but

found that it ended up introducing massive compatibility issues. On top of that, there was no

real business case for extending the BackupRead and BackupWrite functions to accept

asynchronous handles.
As a result, there was no practical reason for changing the function’s

https://devblogs.microsoft.com/oldnewthing/20121221-00/?p=5773
http://blogs.msdn.com/b/oldnewthing/archive/2012/04/11/10292442.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/12/10163578.aspx

2/2

behavior. Instead, the requirement that the handle be synchronous was added to the

documentation, along with additional text explaining that if you pass an asynchronous

handle, you will get “subtle errors that are very difficult to debug.”

In other words, the requirement that the handles be synchronous exists for backward

compatibility.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

