
1/3

December 14, 2012

Why is it possible to create a toolbar with the wrong
HINSTANCE? And what's the right HINSTANCE anyway?

devblogs.microsoft.com/oldnewthing/20121214-00

Raymond Chen

A customer observed that all of the following code fragments
are successful in creating a

toolbar common control:

// Fragment 1: Use the process instance

 // Create the toolbar.

 HWND hWndToolbar = CreateWindowEx(

 0, TOOLBARCLASSNAME, NULL,

 WS_CHILD | TBSTYLE_WRAPABLE, 0, 0, 0, 0,

 hWndParent, NULL, g_hInst, NULL);

// Fragment 2: Use the comctl32 instance

 // Create the toolbar.

 HWND hWndToolbar = CreateWindowEx(

 0, TOOLBARCLASSNAME, L"Toolbar",

 WS_CHILD | WS_VISIBLE | WS_BORDER,

 0, 0, 0, 0,

 hWndParent, NULL, HINST_COMMCTRL, NULL);

// Fragment 3: Use NULL!

 // Create the toolbar.

 HWND hWndToolbar = CreateWindowEx(

 0, TOOLBARCLASSNAME, NULL,

 WS_CHILD | WS_VISIBLE, 0, 0, 0, 0,

 hWndParent, NULL, NULL, NULL);

Furthermore, the customer observed that
 GetClassInfo(hinst, TOOLBARCLASSNAME,

&wc)
works regardless of whether you pass
the process instance or NULL for the hinst

parameter.

First of all, what’s going on?
And second of all, which of the three methods above is most

correct?

We can dispatch Fragment3 easily, because passing
 NULL as the instance handle is

equivalent
to passing the process instance handle.
Therefore, whatever happens in Fragment-

3 is explained by whatever
happens in Fragment 1.
(Treating a NULL instance as a synonym

https://devblogs.microsoft.com/oldnewthing/20121214-00/?p=5833
http://msdn.microsoft.com/en-us/library/hh298381.aspx
http://msdn.microsoft.com/en-us/library/hh298391.aspx

2/3

for
the process instance is a leftover behavior from 16-bit Windows,
so I’m going to declare it

a workaround for
sloppy programming rather than a recommended practice.
If you are doing

this from the process module itself, then you already
have your instance handle, so you

should just use it.
And if you are doing this from a DLL, then stop doing it,
because you’re

messing with with somebody else’s namespace.)

The behavior of Fragment 2 is easy to explain:
The class is registered against the comctl32

library, so naturally, if you create it from that library,
you’ll get the class.

The last case is Fragment 1:
Even though we passed the wrong instance handle, we still got

the control from comctl32 .
We saw the explanation for this
some time ago:
In order to

allow the common controls classes to be used
in dialog templates,
they are registered as

CS_GLOBALCLASS .
One could argue that this is the recommended way of creating the

window,
since it allows your application to superclass a common control
by registering a

private class with the same name in its own namespace.
Only if a custom version is not found

in the provided instance
is the list of global classes consulted.
(I’m not saying that I’m

arguing that position,
just that it is a valid position.)

Okay, so the mystery of the instance handle has been solved.
But why does
 GetClassInfo

return the class
even when it’s registered against some other instance?

Because it found the class!
 GetClassInfo uses the same search algorithm
that Create‐

Window does,
and it tells you the class it ultimately found.
However, for compatibility

reasons,
the WNDCLASS.hInstance member is (usually) a copy
of the HINSTANCE you

passed to
 GetClassInfo ,
regardless of where the class was ultimately found.

The reason for this is that some applications pull tricks like this:

WNDCLASS wc;

GetClassInfo(hinstApp, "something", &wc);

... edit the WNDCLASS structure ...

UnregisterClass("something", hinstApp);

RegisterClass(&wc);

Suppose that something is a global class
and suppose that the
 WNDCLASS.hInstance

were set to the instance
of the module that registered the global class.
The application then

unregisters its private class
and registers what it thinks is a replacement private class.
But

instead, it overwrites the global class.

Oops.

The compatibility fix for this is to return
 hinstApp
in the WNDCLASS.hInstance
member.

That way,
these programs are tricked into registering a private class
rather than overwriting a

global class.

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2005/04/18/409205.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

