
1/2

December 13, 2012

Why is it so hard to write a program that requires UI
Access privilege?

devblogs.microsoft.com/oldnewthing/20121213-00

Raymond Chen

If you want your program to have the UI Access privilege, you have to jump through a few

hoops. The program needs to be digitally signed, and it needs to go into the system32

directory. Why is it so hard to get UI Access?
Because UI Access bypasses User Interface

Privilege Isolation (UIPI) security measures. The more valuable the target, the more

substantial the security measures.
UI Access allows low-integrity programs to access and

interact with the user interface of high-integrity programs. This has historically been the

source of security vulnerabilities. UIPI was created in part to prevent this type of security

attack. If a low-integrity program could programmatically manipulate the user interface of a

high-integrity program, then all an attacker needs to do is sit and wait for the user to elevate

a command prompt, and then start programmatically driving the command prompt to do

whatever it wanted.
If all you had to do to obtain UI Access was simply ask for it (by setting

uiaccess="true" in your manifest), then every piece of malware would just do that, and

boom, the value of UIPI has effectively vanished. (This is the sort of trap that leads to

eventually, nothing is special any more.)
Okay, so the digital signature requirement is there

to create a barrier to entry for malware authors. It also creates some degree of accountability

(since you have to identify yourself to a certificate authority, though as we’ve seen in the past,

this relies on certificate authorities remaining trustworthy), And it allows your application’s

ability to obtain UI Access to be revoked by revoking the certificate.
But why does the file

have to be in the system32 directory?
As we saw some time ago, the directory is the

application bundle. If programs with UI Access could be installed anywhere, then an attacker

could exploit an insecure application directory to plant a rogue copy of a system DLL in that

directory, allowing itself to be injected into the process with UI Access and thereby

compromise it.
The thinking here is “If the application cannot create its install directory, then

the application cannot create its install directory wrong.”

Requiring progams with UI Access to be installed into the system32 directory is an

additional secure by default measure. In order to compromise the application bundle, the

attacker must already have compromised the system32 directory, at which point he’s

already on the other side of the airtight hatchway.

https://devblogs.microsoft.com/oldnewthing/20121213-00/?p=5843
http://en.wikipedia.org/wiki/Shatter_attack
http://blogs.msdn.com/b/oldnewthing/archive/2008/10/06/8969399.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/06/20/10176772.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/12/07/10375415.aspx

2/2

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

