
1/3

December 12, 2012

How am I supposed to free the information returned by
the GetSecurityInfo function?

devblogs.microsoft.com/oldnewthing/20121212-00

Raymond Chen

The GetSecurityInfo function
returns a copy of the security descriptor for a kernel object,

along with pointers to specific portions you request.
More than once, a customer has been

confused by the
guidelines for how to manage the memory returned by the function.

Let’s look at what the function says:

ppsidOwner [out, optional]
A pointer to a variable that receives a pointer to the owner SID
in the security descriptor
returned in
ppSecurityDescriptor.
The returned pointer is valid only if you set the
OWNER_SECURITY_INFORMATION
flag.
This parameter can be NULL if you do not need the

owner SID.

Similar verbiage can be found for the other subcomponent
parameters.
The final parameter

is described as

ppSecurityDescriptor [out, optional]
A pointer to a variable that receives a pointer to the security
descriptor of the object.
When you
have finished using the pointer, free the returned
buffer by calling the LocalFree function.

Okay, so it’s clear that you need to free the security descriptor
with LocalFree .
But how do

you free the owner, group, DACL, and SACL?

Read the documentation again.
I’ve underlined the important part.

ppsidOwner [out, optional]
A pointer to a variable that receives a pointer to the owner SID
in the security descriptor
returned in
ppSecurityDescriptor.
The returned pointer is valid only if you set the
OWNER_SECURITY_INFORMATION
flag.
This parameter can be NULL if you do not need the

owner SID.

In case that wasn’t clear, the point is reiterated in the remarks.

https://devblogs.microsoft.com/oldnewthing/20121212-00/?p=5853
http://msdn.microsoft.com/en-us/library/aa446654.aspx

2/3

If the ppsidOwner,
ppsidGroup,
ppDacl,
and
ppSacl parameters are non-NULL,
and the
SecurityInfo parameter specifies that they be retrieved
from the object,
those parameters will
point to the corresponding parameters
in the security descriptor returned in
ppSecurity-
Descriptor.

In other words, you are getting a pointer
into the security descriptor.
No separate memory

allocation is made.
The memory for the owner SID is freed when you free the security

descriptor.
It’s like the last parameter to GetFullPathName ,
which receives a pointer to the

file part of the full path.
There is no separate memory allocation for that pointer;
it’s just a

pointer back into the main buffer.

You can think of the
 ppsidOwner parameter
as a convenience parameter.
The Get‐

SecurityInfo function
offers to do the work of calling
 GetSecurityDescriptorOwner
for

you.
You can think of the function as operating like this:

DWORD WINAPI GetSecurityInfo(...)

{

 ... blah blah get the security info ...

 // Just out of courtesy:

 // Fetch the owner if the caller requested it

 if (ppsidOwner != NULL &&

 (SecurityInfo & OWNER_SECURITY_INFO)) {

 BOOL fDefaulted;

 GetSecurityDescriptorOwner(pSecurityDescriptor,

 ppsidOwner,

 &fDefaulted);

 }

 ...

}

That’s why the documentation says that you need to pass
a non-null
 ppSecurity‐

Descriptor
if you request any of the pieces of the security descriptor:
If you don’t, then you

won’t be able to free the memory for it.

Bonus chatter:
If the
 ppSecurityDescriptor
is so important,
why is it marked

“optional”?

It really should be a mandatory parameter,
but older versions of Windows didn’t enforce the

rule,
so the parameter is grandfathered in as optional,
even though no self-respecting

program should ever
pass in NULL .
If you pass NULL for the
 ppSecurityDescriptor ,
the

function happily allocates the security descriptor
and then, “Oh wait, the caller didn’t give me

a way to
receive the pointer to the security descriptor,
so I guess I won’t give it to him.”

3/3

DWORD WINAPI GetSecurityInfo(...)

{

 ... blah blah get the security info ...

 if (ppSecurityDescriptor != NULL) {

 *ppSecurityDescriptor = pSecurityDescriptor;

 }

 ...

}

Result: Memory leak.

You might say that the last parameter was designed by somebody
wearing
kernel-colored

glasses.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/05/12/10163578.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

