
1/3

December 7, 2012

It rather involved being on the other side of this airtight
hatchway: Writing to the application directory

devblogs.microsoft.com/oldnewthing/20121207-00

Raymond Chen

We received a security vulnerability report that went roughly like this:

There is a security vulnerability in the X component.
It loads shell32.dll from the current
directory,
thereby making it vulnerable to a current directory attack.
Here is a sample program
that illustrates the problem.
Copy a rogue shell32.dll into the current directory
and run the
program.
Observe that the rogue
 shell32.dll is loaded instead of the system one.

If you actually followed the instructions,
what you saw depended on your definition of “run

the program.”
Let’s assume that the program has been placed in the directory

C:\sample\sample.exe .

1. Setting the current directory to the application directory.

cd /d C:\sample

copy \\rogue\server\shell32.dll

c:\sample\sample.exe

In this case, the attack succeeds.

2. Setting the current directory to an unrelated directory.

cd /d %USERPROFILE%

copy \\rogue\server\shell32.dll

c:\sample\sample.exe

In this case, the attack fails.

3. Running the application from Explorer.

copy \\rogue\server\shell32.dll C:\sample

double-click sample.exe in Explorer

In this case, the attack succeeds.

https://devblogs.microsoft.com/oldnewthing/20121207-00/?p=5893

2/3

Let’s look at case 3 first.
In case 3, what is the current directory?
When you launch a program

from Explorer,
the current directory is set to the directory of the thing
you double-clicked.

Therefore, case 3 is identical to case 1.
That’s one less case to have to study.

We also see that the attack
is not strictly a current directory attack,
because the attack failed

in case 2
even though a rogue shell32.dll was in the current directory.

What we’re actually seeing is an application directory attack.

Recall that the application directory is searched ahead of the
system directory.
Therefore, you

can override a file in the system directory
by putting it in your application directory.
This is

part of the
directory as a bundle principle.
If you packaged a DLL with your application,
then

presumably that’s the one you want,
even if a future version of Windows decides to create a

DLL of the same name.

The vulnerability report sort of acknowledged that this was
an application directory attack

rather than a current directory
attack when they explained why this is a serious problem:

By placing a rogue copy of shell32.dll in the
 C:\Program Files\Microsoft
Office\Office12 directory,
an attacker can inject arbitrary code into all Office applications.

If the attack were really a current directory attack,
the attacker would have put a rogue copy

of
 shell32.dll in the directory containing your
Excel spreadsheet, not the directory

containing
 EXCEL.EXE .

And that’s where you reach the airtight hatchway:
Normal users do not have write permission

into the
 C:\Program Files\Microsoft Office\Office12 directory.
You need

administrator privileges to create files there.
And if you have administrator privileges,
then

you already pwn the machine.
It’s not really a vulnerability that you can do anything you

want
once you pwn the machine.

Of course, this non-vulnerability does expose a security
issue you need to bear in mind when

you run your own programs:
Your application’s directory is its airtight hatchway.
Make sure

you control who you let in!
If you leave your application directory world-writeable,
then

you’ve effectively left your airtight hatchway unlocked.
This is one reason why the Microsoft

Logo guidelines
recommend (require?) that programs be
installed into the
Program Files

directory:
The default security descriptor for subdirectories of Program Files
does not grant

write permission to normal users.
It’s secure by default.

There are many variations of this type of vulnerability report,
and they nearly always are

mischaracterized as a current directory attack.
They usually go like this:

There is a DLL planting vulnerability in LITWARE.EXE.
Place a rogue DLL named
SHELL32.DLL in the same directory as LITWARE.EXE.
When LITWARE.EXE is run, the
rogue DLL is loaded from the current directory,
resulting in code injection.

http://blogs.msdn.com/b/oldnewthing/archive/2010/11/10/10088566.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/06/20/10176772.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/03/07/10278793.aspx

3/3

The person who submits the report has confused the application directory
with the current

directory, probably because they never considered that
the two might be different.

C:\> mkdir C:\test

C:\> cd C:\test

C:\test> copy \\trusted\server\LITWARE.EXE

C:\test> copy \\rogue\server\SHELL32.DLL

C:\test> LITWARE

-- observe that the rogue DLL is loaded

-- proof of current directory attack

They never tried this:

C:\> mkdir C:\test

C:\> cd C:\test

C:\test> copy \\trusted\server\LITWARE.EXE

C:\> mkdir C:\test2

C:\> cd C:\test2

C:\test2> copy \\rogue\server\SHELL32.DLL

C:\test2> ..\test\LITWARE

-- observe that the rogue DLL is not loaded

That second experiment shows that the attack is not a current
directory attack at all.
It’s an

application directory attack.

Each time one of these reports comes in, we have to perform
the same evaluation to confirm

that it really is an application
directory attack and not a current directory attack.
(This

means, among other things, repeating the test on every
version of Windows, and every

version of LitWare, and every
combination of the two, just to make sure all the possibilities

have been covered.
The odds are strong that it will all turn into a false alarm,
but who knows.

Maybe there’s something about the interaction between
LitWare 5.2 SP2
and Windows XP

SP3 that triggers a new code path that
does indeed try to load shell32.dll from the

current directory.
And it’s that specific combination of circumstances the person
was trying

to report, but did a bad job of expressing.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

