
1/3

November 30, 2012

The debugger lied to you because the CPU was still
juggling data in the air

devblogs.microsoft.com/oldnewthing/20121130-00

Raymond Chen

A colleague was studying a very strange failure,
which I’ve simplified for expository purpose.

The component in question has the following
basic shape, ignoring error checking:

// This is a multithreaded object

class Foo

{

public:

void BeginUpdate();

void EndUpdate();

// These methods can be called at any time

int GetSomething(int x);

// These methods can be called only between

// BeginUpdate/EndUpdate.

void UpdateSomething(int x);

private:

Foo() : m_cUpdateClients(0), m_pUpdater(nullptr) { ... }

LONG m_cUpdateClients;

Updater *m_pUpdater;

};

There are two parts of the Foo object.
One part that is essential to the object’s task,
and

another part that is needed only when updating.
The parts related to updating are expensive,

so the
 Foo object sets them up only when
an update is active.
You indicate that an update is

active by calling
 BeginUpdate , and you indicate
that you are finished updating by calling

EndUpdate .

https://devblogs.microsoft.com/oldnewthing/20121130-00/?p=5943

2/3

// Code in italics is wrong

void Foo::BeginUpdate()

{

LONG cClients = InterlockedIncrement(&m_cUpdateClients);

if (cClients == 1) {

 // remember, error checking has been elided

 m_pUpdater = new Updater();

}
// else, we are already initialized for updating,

// so nothing to do

}

void Foo::EndUpdate()

{

LONG cClients = InterlockedDecrement(&m_cUpdateClients);

if (cClients == 0) {

 // last update client has disconnected

 delete m_pUpdater;

 m_pUpdater = nullptr;

}
}

There are a few race conditions here,
and one of them manifested itself in a crash.
(If two

threads call BeginUpdate at the same time,
one of them will increment the client count to 1

and the other
will increment it to 2.
The one which increments it to 1 will get to work

initializing
 m_pUpdater ,
whereas the second one will run ahead on the assumption that the

updater is fully-initialized.)

What we saw in the crash dump was that UpdateSomething
tries to use m_pUpdater and

crashed on a null pointer.
What made the crash dump strange was that if you actually looked

at the Foo object in memory, the m_pUpdater
was non-null!

 mov ecx, [esi+8] // load m_pUpdater

 mov eax, [ecx] // load vtable -- crash here

If you actually looked at the memory pointed-to by
 ESI+8 ,
the value there was not null,
yet

in the register dump, ECX was zero.

Was the CPU hallucinating?
The value in memory is nonzero.
The CPU loaded a value from

memory.
But the value it read was zero.

The CPU wasn’t hallucinating.
The value it read from memory was in fact zero.
The reason

why you saw the nonzero value in memory was
that in the time it took the null pointer

exception to be raised,
then caught by the debugger,
the other thread managed to finish

calling new Updater() ,
store the result back into memory,
and then return back to its

caller and proceed as if everything
were just fine.
Thus, when the debugger went to capture

the memory dump,
it captured a non-zero value in the dump,
and the code which updated

m_pUpdater was long gone.

3/3

This type of race condition is more likely to manifest on multi-core
machines, because on

those types of machines, the two CPUs can have
different views of memory.
The thread doing

the initialization can update
 m_pUpdater in memory,
and other CPUs may not find out

about it until some time later.
The updated value was still in flight when the crash occurred.

Before the debugger can get around to capturing the
 m_pUpdater member in the crash

dump,
the in-flight value lands, and what you see in the crash dump
does not match what the

crashing CPU saw.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

