
1/2

November 16, 2012

How do I forward an exported function to an ordinal in
another DLL?

devblogs.microsoft.com/oldnewthing/20121116-00

Raymond Chen

The syntax for specifying that
requests to import a function from your
DLL should be

forwarded to another DLL
is

; A.DEF

EXPORTS

Dial = B.Call

This says that if somebody tries to call Dial() from
 A.DLL ,
they are really calling

Call() in B.DLL .
This forwarding is done in the loader.
Normally,
when a client links to

the function
 A!Dial ,
the loader says,
“Okay, let me get the address of the Dial function
in

A.DLL and
store it into the
__imp__Dial variable.”
It’s the logical equivalent of

client::__imp__Dial = GetProcAddress(hinstA, "Dial");

When you use a forwarder,
the loader sees the forwarder entry and says,
“Whoa, I’m not

actually supposed to get the function from A.DLL
at all!
I’m supposed to get the function

Call from B.DLL !”
So it loads B.DLL and gets the function
 Call from it.

hinstB = LoadLibrary("B.DLL");

client::__imp__Dial = GetProcAddress(B, "Call");

(Of course, the loader doesn’t actually do it this way,
but this is a good way of thinking about

it.)

But what if the function Call was exported by ordinal?
How do you tell the linker,
“Please

create a forwarder entry for Dial that forwards
to function 42 in B.DLL ?”

I didn’t know, but I was able to guess.

Back in the days of 16-bit Windows, there were two ways to obtain
the address of a function

exported by ordinal.
The first way is the way most people are familiar with:

FARPROC fp = GetProcAddress(hinst, MAKEINTRESOURCE(42));

https://devblogs.microsoft.com/oldnewthing/20121116-00/?p=6073
http://blogs.msdn.com/b/oldnewthing/archive/2008/02/04/7439592.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/21/673830.aspx

2/2

The second way uses an alternate formulation,
passing the desired ordinal as a string

prefixed with the number-sign:

FARPROC fp = GetProcAddress(hinst, "#42");

You can hide a number inside a string by using
 MAKEINTRESOURCE ,
and you can hide a

string inside a number by using the ‘#’ character.

Given that the number sign has been used in the past to hide
a number inside a string,
I

figured it was worth a shot to see if the loader carried this
convention forward.
(No pun

intended.)

; A.DEF

EXPORTS

Dial = B.#1

Hey, check it out. It works.

Sometimes a little knowledge of history actually helps you solve
problems in the present day.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

