
1/6

November 13, 2012

Microsoft Money crashes during import of account
transactions or when changing a payee of a downloaded
transaction

devblogs.microsoft.com/oldnewthing/20121113-00

Raymond Chen

Update:
An official fix for this issue has been released to Windows Update,
although I must say
that I think my patch has more style than the
official one.
You do not need to patch your binary.
Just keep your copy of Windows 8 up to date and you’ll be fine.

For the five remaining Microsoft Money holdouts
(meekly raises hand),
here’s a patch for a

crashing bug during import of account transactions
or when changing a payee of a

downloaded transaction
in
Microsoft Money Sunset Deluxe.
Patch the mnyob99.dll file as

follows:

File offset 003FACE8: Change 85 to 8D

File offset 003FACED: Change 50 to 51

File offset 003FACF0: Change FF to 85

File offset 003FACF6: Change E8 to B9

Note that this patch is
completely unsupported.
If it makes your computer explode or

transfers all your money
to an account in the Cayman Islands,
well, too bad for you.

If you are not one of the five remaining customers of Microsoft Money,
this is a little exercise

in
application compatibility debugging.
Why application compatibility debugging?
Because

the problem seems to be more prevalent
on Windows 8 machines.

Note that I used no special knowledge about Microsoft Money.
All this debugging was

performed with information you also have
access to.
It’s not like I have access to the

Microsoft Money source code.
And I did this debugging entirely on my own.
It was not part of

any official customer support case or anything like that.
I was just debugging a crash that I

kept hitting.

The crash occurs in the function utlsrf08!DwStringLengthA :

https://devblogs.microsoft.com/oldnewthing/20121113-00/?p=6103
http://www.microsoft.com/en-us/download/details.aspx?id=20738

2/6

utlsrf08!DwStringLengthA:

 push ebp

 mov ebp,esp

 mov eax,dword ptr [ebp+8]

 lea edx,[eax+1]

again:

 mov cl,byte ptr [eax]

 inc eax

 test cl,cl

 jne again

 sub eax,edx

 pop ebp

 ret 4

The proximate cause is that the string pointer in eax
is garbage.
If you unwind the stack

one step, you’ll see that the
pointer came from here:

 lea eax,[ebp-20Ch]

 push eax

 call dword ptr [__imp__GetCurrentProcessId]

 push eax

 push offset "Global\TRIE@%d!%s"

 lea eax,[ebp-108h]

 push 104h

 push eax

 call mnyob99!DwStringFormatA

 add esp,14h

 lea eax,[ebp-2E4h]

 push eax

 push 5Ch

 push dword ptr [ebp-2E4h] ; invalid pointer

 call mnyob99!DwStringLengthA

 sub eax,7

 push eax

 lea eax,[ebp-101h]

 push eax

 jmp l2

l1:

 mov eax,dword ptr [ebp-2E4h]

 mov byte ptr [eax],5Fh

 lea eax,[ebp-2E4h]

 push eax

 push 5Ch

 push dword ptr [ebp-2E4h]

 call mnyob99!DwStringLengthA

 push eax

 push dword ptr [ebp-2E4h]

l2:

 call mnyob99!FStringFindCharacterA

 cmp dword ptr [ebp-2E4h],edi

 jne l1

3/6

I was lucky in that all the function calls here were to imported
functions, so I could extract

the names from the imported function table.
For example, the call to DwStringFormatA

was originally

 call mnyob99!CBillContextMenu::SetHwndNotifyOnGoto+0x1e56a (243fc3cc)

But the target address is an
import stub:

 jmp dword ptr [mnyob99+0x1ec0 (24001ec0)]

And then I can walk the import table to see that this was the import
table entry for

utlsrf08!DwStringFormatA .
From the function name, it’s evident that this is some sort of

sprintf -like function.
(If you disassemble it, you’ll see that it’s basically
a wrapper around

vsnprintf .)

Reverse-compiling this code, we get

char name[...];

char buffer[MAX_PATH];

char *backslash;

...

DwStringFormatA(buffer, MAX_PATH, "Global\\TRIE@%d!%s",

 GetCurrentProcessId(), name);

// Change all backslashes (except for the first one) to underscores

if (FStringFindCharacterA(buffer + 7, DwStringLengthA(backslash) - 7,

 '\\',&backslash))

{

 do {

 *backslash = '_'; // Change backslash to underscore

 } while (FStringFindCharacterA(backslash, DwStringLengthA(backslash),

 '\\',&backslash));

}

(Remember, all variable names are made-up since I don’t have source
code access. I’m just

working from the disassembly.)

At this point, you can see the bug:
It’s an uninitialized variable at the first call to
 String‐

FindCharacterA .
Whether we crash or survive is a matter of luck.
If the uninitialized

variable happens to be a pointer
to readable data,
then the
 DwStringLengthA will

eventually
find the null terminator,
and since in practice the string does not contain
any extra

backslashes,
the call to
 FStringFindCharacterA fails,
and nobody gets hurt.

But it looks like their luck ran out,
and now the uninitialized variable contains
something

that is not a valid pointer.

The if test should have been

if (FStringFindCharacterA(buffer + 7, DwStringLengthA(buffer) - 7,

 '\\',&backslash))

http://blogs.msdn.com/b/oldnewthing/archive/2006/07/26/679044.aspx

4/6

This means changing the

 push dword ptr [ebp-2E4h]

to

 lea eax,[ebp-101h]

 push eax

Unfortunately, the patch is one byte larger than the existing
code, so we will need to get a

little clever in order to get it
to fit.

One trick is to rewrite the test as

if (FStringFindCharacterA(buffer + 7, DwStringLengthA(buffer + 7),

 '\\',&backslash))

That lets us rewrite the assembly code as

 lea eax,[ebp-2E4h]

 push eax

 push 5Ch

 lea eax,[ebp-101h] ; \ was "push dword ptr [ebp-2E4h]"

 push eax ; /

 call mnyob99!DwStringLengthA ; unchanged but code moved down one byte
 nop ; \ was "sub eax,7" (3-byte instruction)
 nop ; /

 push eax

 lea eax,[ebp-101h]

 push eax

The new instructions (lea and push)
are one byte larger than the original push ,
but we

got rid of the three-byte sub eax, 7 ,
so it’s a net savings of two bytes, which therefore fits.

However, I’m going to crank the nerd level up another notch
and try to come up with a patch

that involves modifying
as few bytes as possible.
In other words,
I’m going for style points.

To do this, I’m going to take advantage of the fact that
the string length is the return value of

DwStringFormatA ,
so that lets me eliminate the call to
 DwStringLengthA altogether.

However, this means that I have to be careful not to
damage the value in eax
before I get

there.

5/6

 lea ecx,[ebp-2E4h] ; was "lea eax,[ebp-2E4h]"

 push ecx ; was "push eax"

 push 5Ch

 nop ; \

 nop ; |

 nop ; |

 nop ; | was "push dword ptr [ebp-2E4h]"

 nop ; |

 nop ; /

 nop ; \

 nop ; |

 nop ; | was "call mnyob99!DwStringLengthA"

 nop ; |

 nop ; /

 sub eax,7

 push eax

 lea eax,[ebp-101h]

 push eax

Patching the lea eax, … to be
 lea ecx, ... can be done with a single byte,
and the

push eax is a single-byte instruction
as well, so the first two patches can be done with one

byte each.
That leaves me with 11 bytes that need to be nop’d out.

The naïve way of nopping out eleven bytes is simply
to patch in 11 nop instructions,
but you

can do better by taking advantage of the bytes
that are already there.

ffb51cfdffff push dword ptr [ebp-2E4h]

85b51cfdffff test dword ptr [ebp-2E4h],esi

e8770a0000 call mnyob99!DwStringLengthA

b9770a0000 mov ecx,0A77h

By patching a single byte in each of the two instructions,
I can turn them into effective nops

by making them do nothing
interesting.
The first one tests the uninitialized variable against

some garbage bits,
and the second one loads a unused register with a constant.
(Since the

ecx register is going to be trashed by the call to
 FStringFindCharacterA ,
we are free to

modify it all we want prior to the call.
No code could have relied on it anyway.)

That second patch is a variation of one
I called out some time ago,
except that instead of

patching out the call with a
 mov eax, immed32 ,
we’re using a
 mov ecx, immed32 ,

because the value in the eax register is still important.

Here’s the final result:

http://blogs.msdn.com/b/oldnewthing/archive/2004/11/11/255800.aspx

6/6

 lea ecx,[ebp-2E4h] ; was "lea eax,[ebp-2E4h]"

 push ecx ; was "push eax"

 push 5Ch

 test dword ptr [ebp-2E4h],esi ; was "push dword ptr [ebp-2E4h]"

 mov ecx,0a77h ; was "call mnyob99!DwStringLengthA"

 sub eax,7

 push eax

 lea eax,[ebp-101h]

 push eax

Bonus chatter:
When I shared this patch with my friends,
I mentioned that this patch

made me feel like
my retired colleague
Jeff,
who had a reputation for accomplishing

astonishing programming tasks
in his spare time.
You would pop into his office asking for

some help,
and he’d fire up some program you’d never seen before.

“What’s that?” you’d ask.

“Oh, it’s a debugger I wrote,” he’d calmly reply.

Or you’d point him to a program and apologize,
“Sorry, I only compiled it for x86.
There isn’t

an Alpha version.”

“That’s okay, I’ll run it in my emulator,”
he’d say, matter-of-factly.

(And retiring from Microsoft hasn’t slowed him down.
Here’s
an IBM PC Model 5150

emulator written in JavaScript.)

Specifically, I said,
“I feel like Jeff, who does this sort of thing before
his morning coffee.”

Jeff corrected me.
“If this was something I used to do before coffee,
that probably meant I

was up all night.
Persistence >= talent.”

Raymond Chen

Follow

http://hashable.org/
http://jsmachines.net/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

