
1/2

November 7, 2012

Instead of trying to create a filter that includes
everything, try just omitting the filter

devblogs.microsoft.com/oldnewthing/20121107-00

Raymond Chen

The question was sent to a peer-to-peer discussion group for
an internal program,
let’s call it

Program Q.
I’ll add additional context so you can follow along.

Hi, I’m trying to build a query that finds all issues owned by
a particular user, regardless of
which product the issue belongs to.
I know that I can query for specific products by saying

q select -owner bob -product LitWare

q select -owner bob -product Contoso

Is there a better way to do this than just running the query
for every product in the database?
It
would be great to find all the issues at one shot
instead of having to issue dozens of commands
and combine the results.

The person who submitted this question got so distracted by the
 -product filter, that they

forgot that they could
just omit the filter.

q select -owner bob

If you don’t filter by product, then it finds everything
regardless of the product.

Enumerating all the products, then repeating the query for
each product is some sort of anti-

pattern.
I don’t know if it has a name, so I’ll make one up.
The long division anti-pattern

performs an operation on a collection by arbitrarily breaking
the collection into groups,
then

performing the operation on each member of each group,
all this even though the grouping is

unrelated to the operation.

In C#, it would be phrased something like this:

https://devblogs.microsoft.com/oldnewthing/20121107-00/?p=6153
http://blogs.msdn.com/b/oldnewthing/archive/2009/04/16/9551818.aspx

2/2

public void MakeUnavailable(string productId)

{

 var stores = Inventory.Select(p => p.Store).Distinct();

 foreach (var store in stores) {

 foreach (var product in

 from p in Inventory

 where p.Store == store &&

 p.ProductId == productId) {

 product.Available = false;

 }

 }

}

In words, we first dig through the inventory and collect
all the unique stores.
For each store,

we go through the inventory again,
looking for products from that store,
and if the product is

the one we want to make unavailable,
set the Available property to false .
(To avoid

playing favorites,
I used both fluent and query expression syntax.)

Assuming the order in which the product is made unavailable
is not important
(and it doesn’t

appear to be, since we didn’t sort the stores),
the grouping by store is superfluous.
You can

just iterate across the entire inventory without regard
for store:

public void MakeUnavailable(string productId)

{

 foreach (var product in

 from p in Inventory

 where p.ProductId == productId

 select p) {

 product.Available = false;

 }

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

