
1/4

October 29, 2012

In the conversion to 64-bit Windows, why were some
parameters not upgraded to SIZE_T?

devblogs.microsoft.com/oldnewthing/20121029-00

Raymond Chen

James wonders
why many functions kept DWORD for parameter
lengths instead of upgrading

to SIZE_T or
DWORD_PTR.

When updating the interfaces for 64-bit Windows,
there were a few guiding principles.
Here

are two of them.

Don’t change an interface unless you really need to.

Do you really need to?

Changing an interface causes all sorts of problems when porting.
For example, if you change

the parameters to a COM interface,
then you introduce a breaking change in everybody who

implements it.
Consider this hypothetical interface:

// namedobject.idl

interface INamedObject : IUnknown

{

 HRESULT GetName([out, string, sizeof(cchBuf)] LPWSTR pszBuf,

 [in] DWORD cchBuf);

};

And here’s a hypothetical implementation:

// contoso.cpp

class CContosoBasicNamedObject : public INamedObject

{

 ...

 HRESULT GetName(LPWSTR pszBuf, DWORD cchBuf)

 {

 return StringCchPrintfW(pszBuf, cchBuf, L"Contoso");

 }

 ...

};

https://devblogs.microsoft.com/oldnewthing/20121029-00/?p=6233
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10042836

2/4

Okay, now it’s time to 64-bit-ize this puppy.
So you do the natural thing: Grow the
 DWORD

parameter
to DWORD_PTR .
Since
 DWORD_PTR maps to DWORD
on 32-bit systems, this is a

backward-compatible change.

// namedobject.idl

interface INamedObject : IUnknown

{

 HRESULT GetName([out, string, sizeof(cchBuf)] LPWSTR pszBuf,

 [in] DWORD_PTR cchBuf);

};

Then you recompile the entire operating system and find that
the compiler complains,

“Cannot instantiate abstract class: CContosoBasicNamedObject.”
Oh, right, that’s because

the
 INamedObject::GetName method
in the implementation no longer matches the

method in the
base class,
so the method in the base class is not overridden.
Fortunately, you

have access to the source code for
 contoso.cpp , and you can apply the appropriate fix:

// contoso.cpp

class CBasicNamedObject : public INamedObject

{

 ...

 HRESULT GetName(LPWSTR pszBuf, DWORD_PTR cchBuf)

 {

 return StringCchPrintfW(pszBuf, cchBuf, L"Basic");

 }

 ...

};

Yay, everything works again.
A breaking change led to a compiler error, which led you
to the

fix.
The only consequence (so far) is that the number of
“things in code being ported from 32-

bit Windows to 64-bit Windows
needs to watch out for”
has been incremented by one.
Of

course,
too much of this incrementing, and the list of things becomes
so long that developers

are going to throw up their hands and say
“Porting is too much work, screw it.”
Don’t forget,

the number of breaking API changes in the
conversion from 16-bit to 32-bit Windows was

only 117.

You think you fixed the problem, but you didn’t.
Because there’s another class elsewhere in

the Contoso project.

http://blogs.msdn.com/b/oldnewthing/archive/2012/09/13/10348876.aspx

3/4

class CSecureNamedObject : public CBasicNamedObject

{

 ...

 HRESULT GetName(LPWSTR pszBuf, DWORD cchBuf)

 {

 if (IsAccessAllowed())

 {

 return CBasicNamedObject::GetName(pszBuf, cchBuf);

 }

 else

 {

 return E_ACCESSDENIED:

 }

 }

}

The compiler did not raise an error on
 CSecureNamedObject because that
class is not

abstract.
The
 INamedObject::GetName method
from the INamedObject interface
is

implemented by CBasicNamedObject .
All abstract methods have been implemented,
so no

“instantiating abstract class” error.

On the other hand, the CSecureNamedObject
method wanted to override the base method,

but since its parameter list didn’t match,
it ended up creating a separate method rather than

an override.
(The override pseudo-keyword not yet having been standardized.)
As a result,

when somebody calls the
 INamedObject::GetName method
on your
 CSecureNamed‐

Object ,
they don’t get the one with the security check,
but rather the one from
 CBasic‐

NamedObject .
Result: Security check bypassed.

These are the worst types of breaking changes:
The ones where the compiler doesn’t tell you

that something is wrong.
Your code compiles,
it even basically runs,
but it doesn’t run

correctly.
Now, sure, the example I gave would have been uncovered
in security testing,
but I

chose that just for drama.
Go ahead and substitute something much more subtle.
Like say,

invalidating the entire desktop when you pass
NULL to
InvalidateRect.

Okay, so let’s look back at those principles.
Do we really need to change this interface?
The

only case where expanding to
 SIZE_T would make a difference is if
an object had a name

longer than 2 billion characters.
Is that a realistic end-user scenario?
Not really.
Therefore,

don’t change it.

Remember,
you want to make it easier for people to port
their program to 64-bit Windows,

not harder.
The goal is make customers happy, not
create the world’s most architecturally

pure operating system.
And customers aren’t happy when the operating system
can’t run

their programs
(because every time the vendor try to port it, they keep stumbling
over

random subtle behavior changes that break their program).

Raymond Chen

http://blogs.msdn.com/b/oldnewthing/archive/2006/10/24/868544.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

