
1/2

October 23, 2012

Diversion: Generating a random color from JavaScript
devblogs.microsoft.com/oldnewthing/20121023-00

Raymond Chen

A colleague posed a little puzzle for a fun little app he was
writing in HTML:
He wanted to

generate a random color.

If you search around the intertubes,
you can find several possible attempts at a solution,
like

this collection,
and
an interesting example that has trouble with the pigeonhole principle.

The original function to generate a random color went like this:

// Pad a string of up to two characters with a leading zero

// so the result is always exactly two characters long.

function padZero(v) {

return (v.length == 1) ? '0' + v : v;

}

function randomColor() {

return "#" + padZero(Math.floor(Math.random() * 256)).toString(16) +

 padZero(Math.floor(Math.random() * 256)).toString(16) +

 padZero(Math.floor(Math.random() * 256)).toString(16);

}

Can you do better?
(My solution after the jump.)

That was a short jump.

My first simplification was recognizing that three random 8-bit values
is the same as one

random 24-bit value.

function padZeros6(v) {

while (v.length < 6) v = "0" + v;

return v;

}

function randomColor() {

return "#" +

 padZeros6(Math.floor(Math.random() * 16777216).toString(16));

}

https://devblogs.microsoft.com/oldnewthing/20121023-00/?p=6273
http://paulirish.com/2009/random-hex-color-code-snippets/
http://www.namepros.com/code/37251-javascript-random-hex-color.html

2/2

Next, I got rid of the padZeros6 function by
simply setting bit 25 to force a 7-digit result,

then removing
the leading 1.

function randomColor() {

return "#" +

 (Math.floor(Math.random() * 16777216) +

 16777216).toString(16).substr(1);

}

Finally, I did some factoring.

function randomColor() {

return "#" +

 Math.floor((1 + Math.random()) * 16777216).toString(16).substr(1);

}

That last bit was a bit dodgy due to the wonders of floating point
arithmetic, but hey, it’s a

puzzle now.

Finally, I realized that CSS supports #rgb as shorthand
for #rrggbb , so if you don’t mind

that your color
palette is reduced to 4096 colors (and in the case of my colleague’s
little app,

that was not an issue),
you can shorten it a bit more:

function randomColor() {

return "#" +

 Math.floor((1 + Math.random()) * 4096).toString(16).substr(1);

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

