
1/2

October 18, 2012

Why does ShellExecute return SE_ERR_ACCESSDENIED
for nearly everything?

devblogs.microsoft.com/oldnewthing/20121018-00

Raymond Chen

We saw a while ago that the ShellExecute function returns SE_ERR_ACCESSDENIED at the

slightest provocation. Why can’t it return something more meaningful?
The short-term

answer is that the return value from ShellExecute is both a success code and an error code,

and you check whether the value is greater than 32 to see which half you’re in. In particular,

the error code case is if the value you got is less than or equal to 32. This already

demonstrates that the error codes are limited to values less than or equal to 32. And all those

error codes are already accounted for, so there’s nowhere to stick “an error not on the

original list of 32 possible error codes.” Therefore, any error that wasn’t on the original list of

error codes gets turned into SE_ERR_ACCESSDENIED , in the same way that MS-DOS turned

any error that didn’t map to one of its original errors into 5 (access denied).
Okay, but why

was 32 chosen as the cut-off?
The ShellExecute function didn’t come up with that

number. That number came from the kernel folks, who decided that WinExec function

returned the handle to the application that was executed on success, or an error code less

than 32 on failure. And back in the old days, ShellExecute was just a function that called

FindExecutable and then passed the result to WinExec , so following the WinExec

pattern made sense.
(You may have noticed a tiny discrepancy there. The shell folks decided

to add a new error code SE_ERR_DLLNOTFOUND with a numeric value of 32, thereby making

the return value from ShellExecute behave subtly differently from that of WinExec . The

people who made this decision probably regretted it once it became clear that lots of

applications were checking the return value incorrectly, but it’s too late to fix it now.)
Okay,

so let’s peel back another layer: Why did the WinExec function overload the return value?

Well, overloaded return values were all the rage back then. A lot of functions to create

something return the created object on success, or null on failure. The kernel folks said,

“Well, we can do even better than that. Not only can we tell you that we failed to create the

application, we can even tell you why! You see, MS-DOS has a maximum of 31 error codes, so

we can just return the error code directly if we can ensure that no values less than 32 are

valid segments. And we can make that guarantee because the 8086 processor reserves the

first 1024 bytes of memory (the first 64 segments) for its interrupt vector table, so no

application could possibly be loaded there. Hooray! We’re such over-achievers!”
This weird

way of reporting errors from ShellExecute has been preserved for compatibility. New

https://devblogs.microsoft.com/oldnewthing/20121018-00/?p=6303
http://blogs.msdn.com/b/oldnewthing/archive/2010/11/18/10092914.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/05/05/590749.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/11/08/1035971.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/17/354399.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/17/354399.aspx

2/2

applications would probably better served to switch to the ShellExecuteEx function

instead, since it reports errors by calling SetLastError with the real error code before

returning. (In other words, you can call GetLastError to get the real error code.)
Bonus

chatter: Wait a second, if GetLastError gets you the real error code, how come the

original report was that the ShellExecuteEx function also returns SE_ERR_ACCESSDENIED?

Because it depends on what you mean by “returns”. Technically speaking, the Shell‐

ExecuteEx function returns FALSE for all errors, since it is prototyped as returning a

BOOL . When somebody says that it returns an error code, you first have to ask where they

got that error code from.
If they got it from GetLastError , then they’ll get a meaningful

error code, or at least something more meaningful than SE_ERR_ACCESSDENIED .

But if instead they look at the hInstApp member of the SHELLEXECUTEINFO structure,

then they’ll get that useless SE_ERR_ACCESSDENIED value again. Because the hInstApp is

where the legacy return value is recorded. If you look there, you’re going to see the old lame

error code. So don’t look there.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/11/18/10092914.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

