
1/3

October 12, 2012

What happens if you forget to pass an OVERLAPPED
structure on an asynchronous handle?

devblogs.microsoft.com/oldnewthing/20121012-00

Raymond Chen

A customer noticed that they were accidentally issuing some I/O’s against an overlapped

handle without using an OVERLAPPED structure. The calls seemed to work, and the program

did not appear to suffer any ill effects, but they were worried that they just being lucky and

that eventually the error will come back to bite them. So what really happens if you forget to

pass an OVERLAPPED structure on an asynchronous handle?
Well, the layer of the kernel

that deals with OVERLAPPED structures doesn’t know whether then handle is synchronous or

asynchronous. It just assumes that if you don’t pass an OVERLAPPED structure, then the

handle is synchronous. And the way it deals with synchronous I/O without an OVERLAPPED

is that it creates a temporary OVERLAPPED structure on the stack with a null hEvent ,

issues an asynchronous I/O with that temporary OVERLAPPED structure, and then waits for

completion with GetOverlappedResult(bWait = TRUE) . It then returns the result.
What

does this mean for you?
Well, what happens if the hEvent is null?

If the hEvent member of the OVERLAPPED structure is NULL, the system uses the state of
the hFile handle to signal when the operation has been completed.

Okay, let’s step back and look at what’s going on here.
First of all, a file handle is a waitable

object: It becomes unsignaled when an I/O operation begins, and it becomes signaled when

an I/O operation ends.
Second of all, this behavior is not useful in general. If you are

operating on a synchronous handle, you already know when the I/O operation ends: It ends

when the synchronous I/O call returns. And if you are operating on an asynchronous handle,

all the hFile tells you is that some I/O completed, but you don’t know which one it was.

That’s why the documentation also says

Use of file, named pipe, or communications-device handles for this purpose is discouraged. It is
safer to use an event object because of the confusion that can occur when multiple simultaneous
overlapped operations are performed on the same file, named pipe, or communications device.
In this situation, there is no way to know which operation caused the object’s state to be
signaled.

https://devblogs.microsoft.com/oldnewthing/20121012-00/?p=6343
http://msdn.microsoft.com/en-us/library/ms683209.aspx

2/3

What’s more, if somebody initiates a new I/O after your asynchronous I/O completed, the file

object becomes unsignaled, and there’s a possibility that this happened before you got a

change to call WaitForSingleObject .
So why have this weird behavior if it’s not useful in

general? Because it’s what the system itself uses internally to implement synchronous I/O! It

issues the I/O asynchronously, then waits on the handle. Since the handle is synchronous,

the system already knows that there can be only one I/O in progress at a time, so it can just

wait on the hFile to know when that I/O is complete.
Okay, so let’s look again at the case

of the overlapped I/O issued with no OVERLAPPED structure. The layer that deals with

OVERLAPPED structure assumes it has a synchronous handle and issues an asynchronous

I/O, then waits until the handle is signaled, under the mistaken belief that the handle will be

signaled when that I/O completes (since it “knows” that that’s the only outstanding I/O

request). But if your handle is actually asynchronous, what happens is that the OVERLAPPED

layer waits on the hFile , and the call returns when any I/O on that handle completes. In

other words, you’re in the “… is discouraged” part of the documentation.
Theoretically

speaking, then, it is legal to pass NULL as the lpOverlapped to ReadFile when the

handle is asynchronous, but the results may not be what you want, since the call may return

prematurely if there is other I/O going on at the same time. And then when the I/O actually

completes, it updates the OVERLAPPED structure that was created temporarily on the stack,

and we saw that that leads to memory corruption that goes away when you try to debug it.

There are those who argue that the documentation for ReadFile is overly cautious when it

outright bans the use of a null lpOverlapped on asynchronous handles, because if you are

really careful, you can get it to work, if you can guarantee that no I/O is outstanding on the

handle at the time you issue your I/O call, and no other I/O will be issued against the handle

while you’re waiting for your call to complete.
I’m of the camp that it’s like telling people that

it’s okay to change gears on your manual transmission by just slamming the gear stick into

position without using the clutch. Yes, you can do it if you are really careful and get

everything to align just right, but if you mess up, your transmission explodes and spews parts

all over the road.
In the customer’s case they were issuing the I/O without an OVERLAPPED

structure after the handle was created and before asynchronous operations began, so it was

indeed the case that nobody else was using the handle.¹ The usage was therefore technically

safe, but the customer nevertheless chose to switch to using an explicit OVERLAPPED

structure with an explicit hEvent , just in case future code changes resulted in asynchronous

operations being performed on the handle at an earlier point. (Wise choice on the customer’s

part. Safety first!)

¹ We’re assuming that there aren’t any bugs that result in somebody using a handle after

closing it or using an uninitialized handle variable. Even if that assumption isn’t true, it

would also cause problems even in the case where we we passed an explicit OVERLAPPED

structure, so it’s no buggier than it was before.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/02/02/10123392.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/11/22/10094489.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

