
1/2

October 4, 2012

Why does RegOpenKey sometimes (but not always) fail if
I use two backslashes instead of one?

devblogs.microsoft.com/oldnewthing/20121004-00

Raymond Chen

A customer reported that on Windows XP, they observed that
their program would very

rarely get the error
 ERROR_INVALID_ARGUMENT when they passed
two backslashes instead of

one to the
 RegOpenKeyEx function:

RegOpenKeyEx(hk, L"Blah\\\\Oops", ...);

After removing C++ escapes, the resulting string passed to
 RegOpenKeyEx is

Blah\\Oops

The failure was very sporadic and not reproducible under
controlled conditions.

Well, first of all, doubled backslashes are not legal in
registry key paths in the first place,
so

the first recommendation is stop doubling the backslashes.
Once you fix that, the problem

will go away.

But the next question is why the error was detected sometimes
but not always.

When an application tries to open a registry key, the registry
code first consults a cache of

recently-opened keys,
since registry accesses exhibit very high locality of reference.
If a match

is found in the cache, then the cached result is used.
Otherwise, it’s a cache miss,
and the

registry tree is searched in the old-fashioned way.
The registry tree search rejects the double-

backslash since it
interprets the path
 Blah\\Oops as
“Look for a subkey called "Blah" ,

then a subkey called "" ,
then a subkey called "Oops" .”
The “subkey called "" ” step fails

because key cannot have an empty string as their name.

On the other hand, the code that checks the cache
has a different search algorithm which

happens to have the effect of
collapsing consecutive
backslashes, so the path
 Blah\\Oops is

interpreted as
“Look for a subkey called "Blah" ,
then a subkey called "Oops" .”
(Note:

“has the effect of”. There is no explicit
“collapse backslashes” step; it just turns out that the

way the path is parsed, consecutive backslashes end up
being treated as if they were single

backslashes.)

https://devblogs.microsoft.com/oldnewthing/20121004-00/?p=6413

2/2

In the customer’s case, therefore, the key in question is
in the cache most of the time,
which

is why the doubled backslash is silently corrected to a
single backslash.
But every so often,

the key is not in the cache,
and the old-fashioned search is performed.
And the old-fashioned

search rejects the double-backslash
as an invalid path.

The discrepancy in the two parsing algorithms
was resolved in Windows Vista,
so you’ll see

this issue only on Windows XP and earlier.

But this historical tidbit does highlight one of the hidden
gotchas of optimization:
If your

optimized version
differs from the unoptimized version
in cases that are theoretically anyway

illegal,
you may find yourself chasing elusive bugs
when somebody accidentally stumbles into

those cases
and managed to get away with it… until now.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2012/08/31/10345196.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/09/29/10217910.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

