
1/4

September 28, 2012

Data in crash dumps are not a matter of opinion
devblogs.microsoft.com/oldnewthing/20120928-00

Raymond Chen

A customer reported a problem with the
 SystemTimeToTzSpecificLocalTime
function.

(Gosh, why couldn’t they have reported a problem with a function with
a shorter name!
Now

I have to type that thing over and over again.)

We’re having a problem with the
 SystemTimeToTzSpecificLocalTime
function.
We call
it like this:

s_pTimeZones->SystemTimeToTzSpecificLocalTime((BYTE)timeZoneId,

 &sysTime, &localTime);

On some but not all of our machines,
our program crashes with the following call stack:

ExceptionAddress: 77d4a0d0 (kernel32!SystemTimeToTzSpecificLocalTime+0x49)

 ExceptionCode: c0000005 (Access violation)

 ExceptionFlags: 00000000

NumberParameters: 2

 Parameter[0]: 00000000

 Parameter[1]: 000000ac

Attempt to read from address 000000ac

kernel32!SystemTimeToTzSpecificLocalTime+0x49

Contoso!CTimeZones::SystemTimeToTzSpecificLocalTime+0x26

Contoso!CContoso::ResetTimeZone+0xc0

Contoso!ResetTimeZoneThreadProc+0x32

This problem appears to occur only with the release build;
the debug build does not have this
problem.
Any ideas?

Notice that in the line of code the customer provided,
they are not calling
 SystemTimeToTz‐

SpecificLocalTime ;
they are instead calling some application-defined method
with the

same name,
which takes different parameters from the system function.

The customer apologized and included the
source file they were using, as well as a crash

dump file.

https://devblogs.microsoft.com/oldnewthing/20120928-00/?p=6463

2/4

void CContoso::ResetTimeZone()

{

SYSTEMTIME sysTime, localTime;

GetLastModifiedTime(&sysTime);

for (int timeZoneId = 1;

 timeZoneId < MAX_TIME_ZONES;

 timeZoneId++) {

 if (!s_pTimeZones->SystemTimeToTzSpecificLocalTime((BYTE)timeZoneId,

 &sysTime, &localTime)) {

 LOG_ERROR("...");

 return;

 }

 ... do something with localTime ...

}
}

BOOL CTimeZones::SystemTimeToTzSpecificLocalTime(

 BYTE bTimeZoneID,

 LPSYSTEMTIME lpUniversalTime,

 LPSYSTEMTIME lpLocalTime)

{

 return ::SystemTimeToTzSpecificLocalTime(

 &m_pTimeZoneInfo[bTimeZoneID],

 lpUniversalTime, lpLocalTime);

}

According to the crash dump,
the first parameter passed to
 CTimeZones::SystemTimeToTz‐

SpecificLocalTime
was 1 ,
and the m_pTimeZoneInfo member was nullptr .
As a

result, a bogus non-null pointer was passed as the first
parameter to
 SystemTimeToTz‐

SpecificLocalTime ,
which resulted in a crash when the function tried to dereference it.

This didn’t require any special secret kernel knowledge;
all I did was look at the stack trace

and the value of the
member variable.

So far, it was just a case of a lazy developer who didn’t know
how to debug their own code.

But the reply from the customer was most strange:

I don’t think so,
for two reasons.

1. The exact same build on another machine does not crash,
so it must be a machine-specific
or OS-specific bug.

2. The code in question has not changed in several months,
so if the problem were in that
code,
we would have encountered it much earlier.

I was momentarily left speechless by this response.
It sounds like the customer simply

refuses to believe the
information that’s right there in the crash dump.
“La la la, I can’t hear

you.”

3/4

Memory values are not a matter of opinion.
If you look in memory and find that the value 5
is

on the stack,
then the value 5 is on the stack.
You can’t say, “No it isn’t; it’s 6.”
You can have

different opinions on how the value 5
ended up on the stack, but the fact that the value is 5
is

beyond dispute.

It’s like a box of cereal that has been spilled on the floor.
People may argue over who spilled

the cereal,
or who placed the box in such a precarious position in the first place,
but to take

the position
“There is no cereal on the floor” is a pretty audacious move.

Whether you like it or not, the value is not correct.
You can’t deny what’s right there in the

dump file.
(Well, unless you think the dump file itself is incorrect.)

A colleague studied the customer’s code more closely
and pointed out a race condition where

the thread which calls
 CContoso::ResetTimeZone
may do so before the CTimeZone

object has
allocated the m_pTimeZoneInfo array.
And it wasn’t anything particularly subtle

either.
It went like this, in pseudocode:

CreateThread(ResetTimeZoneThreadProc);

s_pTimeZones = new CTimeZones;

s_pTimeZones->Initialize();

// the CTimeZones::Initialize method allocates m_pTimeZoneInfo

// among other things

The customer never wrote back once the bug was identified.
Perhaps the sheer number of

impossible things all happening
at once caused their head to explode.

I discussed this incident later with another colleague,
who remarked

Frequently, some problem X will
occur, and the people debugging it will say,
“The only way
that problem X to occur is if
we are in situation Y,
but we know that situation Y is impossible,
so we didn’t bother investigating that possibility.
Can you suggest another idea?”

Yeah, I can suggest another idea.
“The computer is always right.”
You already saw that
problem X occurred.
If the only way that problem X can occur is if
you are in situation Y,
then
the first thing you should do is assume that
you are in situation Y and work from there.”

Teaching people to follow this simple axiom has
avoid a lot of fruitless misdirected speculative
debugging.
People seem hard-wired to
prefer speculation,
though, and it’s common to slip back
into forgetting
simple logic.

To put it another way:

If X, then Y.

X is true.

Y cannot possible be true.

http://blogs.msdn.com/b/oldnewthing/archive/2008/07/23/8765362.aspx

4/4

In order for these three statements to hold simultaneously,
you must have found a

fundamental flaw in the underlying axioms
of logic as they have been understood for

thousands of years.

This is unlikely to be the case.

Given that you have X right in front of you,
X is true by observation.
That leaves the other

two statements.
Maybe there’s a case where X does not guarantee Y.
Maybe Y is true after all.

As Sherlock Holmes is famous for saying,
“When you have eliminated the impossible,

whatever remains,
however improbable,
must be the truth.”
But before you rule out the

impossible,
make sure it’s actually impossible.

Bonus chatter:
Now that I’ve told you that the debugger never lies,
I get to confuse you in a

future entry by debugging a crash
where the debugger lied.
(Or at least wasn’t telling the

whole truth.)

Raymond Chen

Follow

http://en.wikiquote.org/wiki/Sherlock_Holmes#The_Sign_of_the_Four_.281890.29
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

