
1/2

September 19, 2012

Does the CopyFile function verify that the data reached
its final destination successfully?

devblogs.microsoft.com/oldnewthing/20120919-00

Raymond Chen

A customer had a question about data integrity via file copying.

I am using the
File.Copy to copy files from one server to another.
If the call succeeds, am I
guaranteed that the data was copied
successfully?
Does the File.Copy method internally
perform a file checksum
or something like that to ensure that the data was written correctly?

The
 File.Copy method uses the Win32
 CopyFile function internally,
so let’s look at

CopyFile .

CopyFile just issues ReadFile calls
from the source file and WriteFile calls to the

destination file.
(Note: Simplification for purposes of discussion.)
It’s not clear what you are

hoping to checksum.
If you want CopyFile to checksum the bytes when
the return from

ReadFile , and checksum the bytes
as they are passed to
 WriteFile , and then compare

them at the end of
the operation, then that tells you nothing, since they are
the same bytes in

the same memory.

while (...) {

ReadFile(sourceFile, buffer, bufferSize);

readChecksum.checksum(buffer, bufferSize);

writeChecksum.checksum(buffer, bufferSize);

WriteFile(destinationFile, buffer, buffer,Size);

}

The readChecksum and
 writeChecksum are identical because they
operate on the same

bytes.
(In fact, the compiler might even optimize the code by
merging the calculations

together.)
The only way something could go awry is if you have flaky
memory chips that

change memory values spontaneously.

Maybe the question was whether CopyFile goes
back and reads the file it just wrote out to

calculate
the checksum.
But that’s not possible in general, because you might not
have read

access on the destination file.
I guess you could have it do a checksum if the destination were

readable, and skip it if not, but then that results in a bunch
of weird behavior:

https://devblogs.microsoft.com/oldnewthing/20120919-00/?p=6563
http://msdn.microsoft.com/en-us/library/c6cfw35a.aspx

2/2

It generates
spurious security audits when it tries to read from the destination
and gets

ERROR_ACCESS_DENIED .

It means that CopyFile sometimes does a checksum
and sometimes doesn’t, which

removes the value of any checksum
work since you’re never sure if it actually happened.

It doubles the network traffic for a file copy operation,
leading to weird workarounds

from network administrators like
“Deny read access on files in order to speed up file

copies.”

Even if you get past those issues, you have an even bigger problem:
How do you know that

reading the file back will really tell you
whether the file was physically copied successfully?
If

you just read the data back, it may end up being read out of the
disk cache, in which case

you’re not actually verifying physical media.
You’re just comparing cached data to cached

data.

But if you open the file with caching disabled, this has the side
effect of purging the cache for

that file, which means that the
system has thrown away a bunch of data that could have been

useful.
(For example, if another process starts reading the file at the same
time.)
And, of

course, you’re forcing access to the physical media, which is slowing
down I/O for everybody

else.

But wait, there’s also the problem of caching controllers.
Even when you tell the hard drive,

“Now read this data from the physical
media,”
it may decide to
return the data from an

onboard cache instead.
You would have to issue a “No really, flush the data and read it back”

command to the controller to ensure that it’s really reading from
physical media.

And even if you verify that, there’s no guarantee that the moment you
declare “The file was

copied successfully!” the drive platter won’t
spontaneously develop a bad sector and corrupt

the data you just
declared victory over.

This is one of those “How far do you really want to go?” type of questions.
You can re-read

and re-validate as much as you want at copy time,
and you
still won’t know that the file data

is valid when you finally
get around to using it.

Sometimes,
you’re better off just trusting the system
to have done what it says it did.

If you really want to do some sort of copy verification,
you’d be better off saving the

checksum somewhere and having
the ultimate consumer of the data validate the checksum

and raise an integrity error if it discovers corruption.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/09/09/10059575.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

