
1/3

September 10, 2012

When you transfer control across stack frames, all the
frames in between need to be in on the joke

devblogs.microsoft.com/oldnewthing/20120910-00

Raymond Chen

Chris Hill suggests
discussing the use of structured exception handling as it relates
to the

window manager, and specifically the implications for
applications which raise exceptions

from a callback.

If you plan on raising
an exception and handling it in a function higher up the stack,
all the

stack frames in between need to be be in on your little scheme,
because they need to be able

to unwind.
(And I don’t mean “unwind” in the “have a beer and watch some football”
sense of

“unwind”.)

If you wrote all the code in between the point the exception is
raised and the point it is

handled, then you’re in good shape,
because at least then you have a chance of making sure

they all
unwind properly.
This means either using RAII techniques (and possibly compiling

with
the /EHa  flag to convert asynchronous exceptions
to synchronous ones, so that Win32

exceptions will also trigger
unwind; although that has its own problems since the C++

exception
model is synchronous, not asynchronous)
or judiciously using try / finally  (or

whatever equivalent exists in your programming language of choice)
to clean up resources in

the event of an unwind.

But if you don’t control all the frames in between, then you
can’t really guarantee that they

were written in the style you want.

In Win32, exceptions are considered to be horrific situations
that usually indicate some sort

of fatal error.
There may be some select cases where exceptions can be handled,
but those are

more the unusual cases than the rule.
Most of the time, an exception means that something

terrible
has happened and you’re out of luck.
The best you can hope for at this point is a

controlled crash landing.

As a result of this overall mindset, Win32 code doesn’t worry
too much about recovering

from exceptions.
If an exception happens, then it means your process is already
toast and

there’s no point trying to fix it,
because that would be
trying to reason about a total

https://devblogs.microsoft.com/oldnewthing/20120910-00/?p=6653
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10042978
http://blogs.msdn.com/b/oldnewthing/archive/2009/11/13/9921676.aspx


2/3

breakdown of normal functioning.
As a general rule
generic Win32 code is not exception-

safe.

Consider a function like this:

struct BLORP

{

   int Type;

   int Count;

   int Data;

};
CRITICAL_SECTION g_csGlobal; // assume somebody initialized this

BLORP g_Blorp; // protected by g_csGlobal

void SetCurrentBlorp(const BLORP *pBlorp)

{

   EnterCriticalSection(&g_csGlobal);

   g_Blorp = *pBlorp;

   LeaveCriticalSection(&g_csGlobal);

}

void GetCurrentBlorp(BLORP *pBlorp)

{

   EnterCriticalSection(&g_csGlobal);

   *pBlorp = g_Blorp;

   LeaveCriticalSection(&g_csGlobal);

}


These are perfectly fine-looking functions from a traditional Win32 standpoint.
They take a

critical section, copy some data, and leave the
critical section.
The only thing¹ that could go

wrong is
that the caller passed a bad pointer.
In the case of TerminateThread ,
we’re

already in the world of “don’t do that”
If that happens, a STATUS_ACCESS_VIOLATION

exception is raised, and the application dies.

But what if your program decides to handle the access violation?
Maybe pBlorp  points into

a memory-mapped file,
and there is an I/O error paging the memory in,
say because it’s a file

on the network and there was a network
hiccup.
Now you have two problems:
The critical

section is orphaned, and the data is only partially
copied.
(The partial-copy case happens if

the pBlorp  points to
a BLORP  that straddles a page boundary, where the first
page is valid

but the second page isn’t.)
Just converting this code to RAII solves the first problem,
but it

doesn’t solve the second, which is kind of bad because
the second problem is what the critical

section was trying to prevent
from happening in the first place!

http://blogs.msdn.com/b/oldnewthing/archive/2009/11/13/9921676.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/12/11/1259599.aspx#1264901


3/3

void SetCurrentBlorp(const BLORP *pBlorp)

{

   CriticalSectionLock lock(&g_csGlobal);

   g_Blorp = *pBlorp;

}

void GetCurrentBlorp(BLORP *pBlorp)

{

   CriticalSectionLock lock(&g_csGlobal);

   *pBlorp = g_Blorp;

}


Suppose somebody calls SetCurrentBlorp  with
a BLORP  whose Type  and Count 
are in

readable memory, but whose Data  is not.
The code enters the critical section, copies the

Type 
and Count , but crashes when it tries to copy the
 Data ,
resulting in a

STATUS_ACCESS_VIOLATION  exception.
Now suppose that somebody unwisely decides to

handle this exception.
The RAII code releases
the critical section (assuming that you

compiled with /EHa ),
but there’s no code to try to patch up the now-corrupted
 g_Blorp .

Since the critical section was probably added to prevent g_Blorp 
from getting corrupted,

the result is that the thing you tried to protect against ended up
happening anyway.

Okay, that was a bit of a digression.
The point is that unless everybody between the point the

exception
is raised and the point the exception is handled is in on the joke,
you are unlikely to

escape fully unscathed.
This is particular true in the generalized Win32 case,
since it is

perfectly legal to write Win32 code in languages
other than C++,
as long as you adhere to the

Win32 ABI.
(I’m led to believe that Visual Basic is still a popular language.)

There are a lot of ways of getting stack frames beyond your control
between the point the

exception is raised and the point it is handled.
For example, you might call
 EnumWindows

and raise an exception in the
callback function and try to catch it in the caller.
Or you might

raise an exception in a window procedure and try to
catch it in your message loop.
Or you

might try to longjmp  out of a window procedure.
All of these end up raising an exception

and catching it in another
frame.
And since you don’t control all the frames in between,
you

can’t guarantee that they are all prepared to resume execution
in the face of an exception.

Bonus reading:
My colleague
Paul Betts has written up
a rather detailed study of one

particular instance of this phenomenon.

¹Okay, another thing that could go wrong is
that somebody calls
 TerminateThread  on the

thread,
but whoever did that knew they were corrupting the process.

Raymond Chen

Follow







http://paulbetts.org/
http://blog.paulbetts.org/index.php/2010/07/20/the-case-of-the-disappearing-onload-exception-user-mode-callback-exceptions-in-x64/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

